Answer:
True
Explanation:
Just as Isaac Newton says, "For every action, there is an equal and opposite reaction."
Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
A graph that starts from the top left decreasing to the bottom right
Chalecos no tienen mangas. Vests don't have sleeves.<span />
Answer:
Capacitance is 0.572×10⁻¹⁰ Farad
Explanation:
Radius = R₁ = 6.25 cm = 6.25×10⁻² m
Radius = R₂ = 15 cm = 15×10⁻² m
Dielectric constant = k = 4.8
Electric constant = ε₀ = 8.854×10⁻¹² F/m
ε/ε₀=k
ε=kε₀

∴ Capacitance is 0.572×10⁻¹⁰ Farad