1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
11

If the surface air pressure is 1000 mb and the pressure at the top of the atmosphere (75 km) is 0 mb, at what altitude would I f

ind half of the atmosphere air pressure?
Physics
1 answer:
Lana71 [14]3 years ago
8 0

Answer: 5.5km

Explanation:

Atmospheric pressure will be 500 mb (that is half of the total 1000mb air pressure).

Pressure decreases with increasing altitude. This is because at At higher altitudes, there are fewer air molecules above a the known or given surface than a similar surface at lower levels.

Pressure decreasing with higher altitudes also means that  air pressure decreases rapidly at lowerevels but more slowly at higher levels.

It is also known that more than half of the atmospheric molecules are located below 5.5 km(that is atmospheric pressure decreases within the lowest 5.5 km to about fifty(50) percent( that is 500 millibar).

You might be interested in
The intensity of a sound wave at a fixed distance from a speaker vibrating at 1.00 kHz is 0.750 W/m2. (a) Determine the intensit
sveticcg [70]

Answer:

a)   I = 3.63 W / m² , b)   I = 0.750 W / m²

Explanation:

The intensity of a sound wave is given by the relation

         I = P / A = ½ ρ v (2π f s_{max})²

         I = (½ ρ v 4π² s_{max}²) f²

a) with the initial condition let's call the intensity Io

        cte = (½ ρ v 4π² s_{max}²)

         I₀ = cte s² f₀²

        I₀ = cte 10 6

If frequency is increase f = 2.20 10³ Hz

         I = constant (2.20 10³) 2

         I = cte 4.84 10⁶

let's find the relationship of the two quantities

        I / Io = 4.84

        I = 4.84 Io

        I = 4.84 0.750

        I = 3.63 W / m²

b) in this case the frequency is reduced to f = 0.250 10³ Hz and the displacement s = 4 s or

        I = cte (f s)²

        I = constant (0.250 10³ 4)²

 

        I = cte 1 10⁶

         

the relationship

        I / Io = 1

        I = Io

        I = 0.750 W / m²

6 0
3 years ago
A concert loudspeaker suspended high off the ground emits 34 W of sound power. A small microphone with a 1.0 cm2 area is 44 m fr
rjkz [21]

Answer:

<u>Part A</u>

I = 1.4 mW/m²  

<u>Part B</u>

β = 91.46 dB

Explanation:

<u>Part A</u>

Sound intensity is the power per unit area of sound waves in a direction perpendicular to that area. Sound intensity is also called acoustic intensity.

For a spherical sound wave, the sound intensity is given by;

                                            I = \frac{P}{A}

                                            I = \frac{P}{4\pi r^{2}}

Where;

P is the source of power in watts (W)

I is the intensity of the sound in watt per square meter (W/m2)

r is the distance r away

Given:

P = 34 W,

A = 1.0 cm²

r = 44 m

The sound intensity at the position of the microphone is calculated to be;

                                     I = \frac{34}{4\pi (44)^{2}}

                                     I = \frac{34}{4\pi (44)^{2}}

                                     I = 0.0013975 W/m²

                                 ≈  I = 0.0014 W/m² = 1.4 × 10⁻³ W/m²

                                     I = 1.4 mW/m²

The sound intensity at the position of the microphone is 1.4 mW/m².

<u>Part B</u>

Sound intensity level or acoustic intensity level is the level of the intensity of a sound relative to a reference value.  It is a a logarithmic quantity. It is denoted by β and expressed in nepers, bels, or decibels.

Sound intensity level is calculated as;  

                                    β = 10log_{10}\frac{I}{I_{0}}  dB

Where,

β is the Sound intensity level in decibels (dB)

I is the sound intensity;

I₀ is the reference sound intensity;

By pluging-in, I₀ is 1.0 × 10⁻¹² W/m²

           ∴        β = 10log_{10}\frac{1.4 * 10^{-3} W/m^{2}}{1.0 * 10^{-12} W/m^{2}}

                      β = 10log_{10} (1.4 * 10^{9})

                      β = 91.46 dB

The sound intensity level at the position of the microphone is 91.46 dB.                

4 0
3 years ago
A gecko crawls vertically up and down a wall. Its motion is shown on the following graph of vertical position yyy vs. time ttt.
earnstyle [38]

Answer:

gfdvcfffddfgffffdrddgfddddghtscgvfrggxfhxdg

4 0
3 years ago
What is weight?
Over [174]

Answer:

1

Explanation:

plzzzzzzz Mark my answer in brainlist and follow me

4 0
3 years ago
Read 2 more answers
What type of lever has the fulcrum between the resistance arm and the effort arm?
crimeas [40]
I’m not really sure but I think it’s D type 1 lever
4 0
3 years ago
Other questions:
  • Amy has a mass of 30 kg, and she is riding a skateboard traveling 5 m/s. What is her momentum
    9·2 answers
  • A war wolf is a device used during the middle ages to assault fortifications with large rocks. A simple trebuchet is constructed
    5·1 answer
  • What are the different ways a person could reduce air pollution and energy consumption?
    14·1 answer
  • The velocity of in water is 1500 m/s.
    5·1 answer
  • Xamine the graph. Select the statement that best describes the energy change in the particles of a substance during melting.
    8·1 answer
  • If Mars were the same size as Mercury (instead of its actual size), which surface features would it have?
    7·1 answer
  • Why is physics important for high school students to learn?
    10·1 answer
  • To play ice hockey, each player needs ________. skates rollerblades crosses sunglasses
    14·1 answer
  • Someone pls answer! i will give u brainliest
    10·2 answers
  • After watching the video below and based on your personal experiences, is there a difference
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!