Answer:
So do 2400 divided by 70. I got 34.285714 and the numbers behind the decimal are repeating. If you round it you get 34.3
It depends on the type of interference.
For constructive interference, add the amplitudes to get |35 + 41| = 76 units.
For destructive, subtract them |35 - 41| = 6 units
Ionic compounds is your answer. What happens is one atom donates electron(s) to the other atom, making one positive and the other negative. The opposite atoms attract, forming an ionic bond.
Hope this helps! :)
Given that,
Frequency emitted by the bat, f = 47.6 kHz
The speed off sound in air, v = 413 m/s
We need to find the wavelength detected by the bat. The speed of a wave is given by formula as follows :

or

So, the bat can detect small objects such as an insect whose size is approximately equal to the wavelength of the sound the bat makes i.e. 8.67 mm.
To solve the problem it is necessary to use Newton's second law and statistical equilibrium equations.
According to Newton's second law we have to

where,
m= mass
g = gravitational acceleration
For the balance to break, there must be a mass M located at the right end.
We will define the mass m as the mass of the body, located in an equidistant center of the corners equal to 4m.
In this way, applying the static equilibrium equations, we have to sum up torques at point B,

Regarding the forces we have,

Re-arrange to find M,



Therefore the maximum additional mass you could place on the right hand end of the plank and have the plank still be at rest is 16.67Kg