Answer:
1) The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.
2) In equilibrium, there is no net flow of mobile charged particles inside a conductor.
3) If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.
Explanation:
1) and 3) A block of copper is a conductor. The charged particles on a conductor in equilibrium are at rest, so the intensity of the electric field at all interior points of the conductor is zero, otherwise, the charges would move resulting in an electric current.
2) The charged particles on a conductor in equilibrium are at rest.
The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.
Answer:
??
Explanation:
what's the actual question
Answer: A
Explanation: isotopes of the same thing element have the same number of protons in the nucleus but differ in the number of neutrons.
Answer:
Q = 7272 Kilojoules.
Explanation:
<u>Given the following data;</u>
Mass = 2.0*101kg = 202kg
Initial temperature, T1 = 10°C
Final temperature, T2 = 90°C
We know that the specific heat capacity of iron = 450J/kg°C
*To find the quantity of heat*
Heat capacity is given by the formula;
Where;
- Q represents the heat capacity or quantity of heat.
- m represents the mass of an object.
- c represents the specific heat capacity of water.
- dt represents the change in temperature.
dt = T2 - T1
dt = 90 - 10
dt = 80°C
Substituting the values into the equation, we have;
Q = 7272KJ or 7272000 Joules.