Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Answer:
Okay the Answers are top to bottom.
5, 4, 1, 3, 2
Explanation:
Answer:
Concept: Chemical Analysis
- You need to start by graphing the data and then analyzing it.
- We can see that the horse has a distance in meters of 980 at the end of the 10 seconds hence it is the fastest.
- The horse line has a linearly representation, while the alternate line has parabolic tendencies towards the end. The steeper line indicates a faster change in time or velocity which results in a greater distance traveled indicating that the horse is faster.
- *I have confidence you can graph that*
The chemical formula does not show how the atoms are connected to one another.
When we write the chemical formula of any substance, we are not able to understand the spatial arrangement of that substance's atoms. This is extremely important in organic compounds, which exhibit different physical characteristics as well as different chemical characteristics due to the way their atoms are arranged in space. These isomers are known as enantiomers.