Gravity pulls to the centre of the earth. A ship floats in water because the water pushing it up (upthrust) is equal to the force<span> of gravity (weight) pulling it </span>down<span>. Friction also occurs when objects move through air. This is </span>called<span>air resistance.</span>
The answer OC. It can be changed only if all scientists approve the change
Answer:
2.43J
Explanation:
Given parameters:
Mass of the arrow = 0.155kg
Velocity = 31.4m /s
Unknown:
Kinetic energy when it leaves the bow = ?
Solution:
The kinetic energy of a body is the energy in motion of the body;
it can be derived using the expression below:
K.E =
m v²
m is the mass
v is the velocity
Solve for K.E;
K.E =
x 0.155 x 31.4 = 2.43J
Answer:
b) Betelgeuse would be
times brighter than Sirius
c) Since Betelgeuse brightness from Earth compared to the Sun is
the statement saying that it would be like a second Sun is incorrect
Explanation:
The start brightness is related to it luminosity thought the following equation:
(1)
where
is the brightness,
is the star luminosity and
, the distance from the star to the point where the brightness is calculated (measured). Thus:
b)
and
where
is the Sun luminosity (
) but we don't need to know this value for solving the problem.
is light years.
Finding the ratio between the two brightness we get:

c) we can do the same as in b) but we need to know the distance from the Sun to the Earth, which is
. Then

Notice that since the star luminosities are given with respect to the Sun luminosity we don't need to use any value a simple states the Sun luminosity as the unit, i.e 1. From this result, it is clear that when Betelgeuse explodes it won't be like having a second Sun, it brightness will be 5 orders of magnitude smaller that our Sun brightness.