1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
photoshop1234 [79]
3 years ago
13

A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equ

ilibrium point and released. Determine
a) the spring constant
b) the maximum velocity of the mass
c) the maximum acceleration of the mass
d) the total mechanical energy of the mass
e) the period and frequency of the mass and spring and
f) the equation of time-dependent vertical position of the mass
Physics
1 answer:
DochEvi [55]3 years ago
7 0

Answer:

a)  k=19.6N/m

b)  V_m=0.81m/s

c)  a_m=6.561m/s^2

d)  K.E=0.096J

e)  T=0.78sec &F=1.29sec

f)   mx'' + kx' =0

Explanation:

From the question we are told that:

Stretch Length L=0.150m

Mass m=0.30kg

Total stretch lengthL_t=0.150+0.100=>0.25

a)

Generally the equation for Force F on the spring is mathematically given by

F=-km\\\\k=F/m\\\\k=\frac{m*g}{x}\\\\k=\frac{0.30*9.8}{0.15}

k=19.6N/m

b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

V_m=A\omega

Where

A=Amplitude

A=0.100m

And

\omega=angulat Velocity\\\\\omega=\sqrt{\frac{k}{m}}\\\\\omega=\sqrt{\frac{19.6}{0.3}}\\\\\omega=8.1rad/s

Therefore

V_m=A\omega\\\\V_m=8.1*0.1

V_m=0.81m/s

c)

Generally the equation for Max Acceleration of Mass on the spring is mathematically given by

a_m=\omega^2A

a_m=8.1^2*0.1

a_m=6.561m/s^2

d)

Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*0.3*0.8^2

K.E=0.096J

e)

Generally the equation for  the period T is mathematically given by

\omega=\frac{2\pi}{T}

T=\frac{2*3.142}{8.1}

T=0.78sec

Generally the equation for  the Frequency is mathematically given by

F=\frac{1}{T}

F=1.29sec

f)

Generally the Equation of time-dependent vertical position of the mass is mathematically given by

mx'' + kx' =0

Where

'= signify order of differentiation

You might be interested in
Sketch a reaction progress curve for a reaction that has an activation energy of 22 kj and the total energy change is -103kj.
crimeas [40]

Answer:

Do find the answer in the attachment herein.

Explanation:

From the attached diagram:

I. Activation energy = Activated complex - ∆H(reactants)

Activation energy = 162-140 = 22Kj.

II. ∆H(reaction) = ∆H(products) - ∆H(reactants)

∆H(reaction) = 37 - 140 = -103Kj.

8 0
3 years ago
I need the answer asap everyone have a good day bye
Slav-nsk [51]

Im pretty sure its A cuz is closer to the earth.

5 0
3 years ago
Q 1 . How many significant figures are in the following measurement? 0.0009(1 point)
Crazy boy [7]

Here we have some questions about experimental errors.

Q1) We want to see how many significant figures have the measure:

0.0009

The number of significant figures is the number of known digits that are not the leading zeros.

Here we can see four leading zeros, and a single-digit different than zero, which is a 9.

Then we have only one significant figure, the 9.

Q2) Here we will use the measure that is the less exact, as the error of that measure may be larger than the smaller significant figures of the other measures.

Then:

31.2 lb + 38.02lb + 45 lb

The worst measure is 45lb, so the smallest significant figure that we should use is the first one at the left of the decimal point, then we need to round the other two measures to the next whole number, we will get:

31 lb + 38 lb + 45 lb = 114lbs

Q3) We know that the measure is 11.5 seconds and the uncertainty of 1.7%, then the uncertainty will be the 1.7% of the above measure:

(1.7%/100%)*11.5 s = 0.1955 s

Notice that our measure has one significant figure after the decimal point, so we need to round the error to the same significant figure.

0.1955 s ≈ 0.2s

Then the measure is:

11.5 s ± 0.20 s

Q4) We have the measure:

312.0 mph ± 3.9 mph.

The percent uncertainty will be the quotient between the error and the measure times 100%, or:

(3.9 mph/312.0 mph)*100%  = 1.25%

This is a percent error, we do not need to round this.

If you want to learn more, you can read:

brainly.com/question/17339020

5 0
2 years ago
A(n) _____ is an organic compound that changes color in acid or bases.
Romashka-Z-Leto [24]
The answer is indicator.
6 0
3 years ago
What is a net force on an object that has a mass of 20.0 kg, an applied force of 100 n moving on a surface with a friction coeff
sergiy2304 [10]

The net force on the object as described is; 58.84N

Two forces acting on the object are;

  • The <em>applied force and the frictional force.</em>

In essence; the frictional force can be evaluated as;

  • Frictional force; = coefficient × Weight of object.

  • Frictional force = 0.21 × 20 × 9.8.

  • Frictional force = 41.16N

  • The Net force = Applied force - frictional force

  • Net force = 100 - 41.16N

Net Force = 58.84 N.

Read more:

brainly.com/question/94428

5 0
2 years ago
Other questions:
  • A body 'A' of mass 1.5kg travelling along the positive X-axis with speed of 4.5m/s collides with another body 'B' of mass 3.2kg,
    14·1 answer
  • What affects a material’s resistance?
    5·2 answers
  • If a sprinter’s mass is 60 kg, how much forward force must be exerted on the sprinter to make the sprinter accelerate at 0.8 m/s
    12·2 answers
  • What is the effect on an electric current when the voltage is increased? An increase in voltage causes the flow of electric curr
    7·2 answers
  • A 12-kg hammer strikes a nail at a velocity of and comes to rest in a time interval of 8.0 ms. (a) What is the impulse given to
    9·1 answer
  • A bobsled has a momentum of 4000 kg•m/s to the south. Friction on the
    5·1 answer
  • How does magnetic compass help to identify directions​
    6·1 answer
  • Two spheres of equal mass, A and B, are projected off the edge of a 1.0 m bench.    Sphere A has a horizontal velocity of 10 m/s
    14·1 answer
  • The type of brightness in which all
    13·1 answer
  • "The energy conversions that take place from the time the plunger is pushed down to the time the explosives detonate are from...
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!