1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
photoshop1234 [79]
3 years ago
13

A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equ

ilibrium point and released. Determine
a) the spring constant
b) the maximum velocity of the mass
c) the maximum acceleration of the mass
d) the total mechanical energy of the mass
e) the period and frequency of the mass and spring and
f) the equation of time-dependent vertical position of the mass
Physics
1 answer:
DochEvi [55]3 years ago
7 0

Answer:

a)  k=19.6N/m

b)  V_m=0.81m/s

c)  a_m=6.561m/s^2

d)  K.E=0.096J

e)  T=0.78sec &F=1.29sec

f)   mx'' + kx' =0

Explanation:

From the question we are told that:

Stretch Length L=0.150m

Mass m=0.30kg

Total stretch lengthL_t=0.150+0.100=>0.25

a)

Generally the equation for Force F on the spring is mathematically given by

F=-km\\\\k=F/m\\\\k=\frac{m*g}{x}\\\\k=\frac{0.30*9.8}{0.15}

k=19.6N/m

b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

V_m=A\omega

Where

A=Amplitude

A=0.100m

And

\omega=angulat Velocity\\\\\omega=\sqrt{\frac{k}{m}}\\\\\omega=\sqrt{\frac{19.6}{0.3}}\\\\\omega=8.1rad/s

Therefore

V_m=A\omega\\\\V_m=8.1*0.1

V_m=0.81m/s

c)

Generally the equation for Max Acceleration of Mass on the spring is mathematically given by

a_m=\omega^2A

a_m=8.1^2*0.1

a_m=6.561m/s^2

d)

Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*0.3*0.8^2

K.E=0.096J

e)

Generally the equation for  the period T is mathematically given by

\omega=\frac{2\pi}{T}

T=\frac{2*3.142}{8.1}

T=0.78sec

Generally the equation for  the Frequency is mathematically given by

F=\frac{1}{T}

F=1.29sec

f)

Generally the Equation of time-dependent vertical position of the mass is mathematically given by

mx'' + kx' =0

Where

'= signify order of differentiation

You might be interested in
Because light travels in a straight line and casts a shadow, Isaac Newton hypothesized that light is
KonstantinChe [14]

A stream of particles

3 0
3 years ago
A bug on the surface of a pond is observed to move up and down a total vertical distance of 6.5 cm , from the lowest to the high
m_a_m_a [10]

Answer:

factor that bug maximum KE change is 0.52284

Explanation:

given data

vertical distance = 6.5 cm

ripples decrease to =  4.7 cm

solution

We apply here formula for the KE of particle that executes the simple harmonic motion that is express as

KE = (0.5) × m × A² × ω²     .................1

and kinetic energy is  directly proportional to square of the amplitude.

so

\frac{KE2}{KE1} =  \frac{A2^2}{A1^2}      .............2

\frac{KE2}{KE1} = \frac{4.7^2}{6.5^2}

\frac{KE2}{KE1} = 0.52284

so factor that bug maximum KE change is 0.52284

5 0
3 years ago
What is the gravitational potential energy of a 15.0kg object that is 5.00m above the ground relative to a point 8.00m above the
Licemer1 [7]

Explanation:

an object's gravitational potential energy Eg is m×g×h where:

m=mass

g=9.8m/s²

h=height relative to the closest object below it (because it cannot potentially fall through it

so Eg = 15×9.8×5=735J

4 0
2 years ago
I was walking with Ruby in a garden from rest in a straight line with uniform acceleration so that we covered 0.25 m in the fift
Serhud [2]

Answer:

0.02m/s^2

Explanation:

7 0
2 years ago
A capacitor with an initial potential difference of 185 V is discharged through a resistor when a switch between them is closed
GrogVix [38]

Answer:

  • a. \tau =  2.1161 s
  • b. V(18.8 \ s) = 0.0256 \ V

Explanation:

<h3>a.</h3>

The equation for the voltage V of  discharging capacitor in an RC circuit at time t is:

V(t) = V_0 e^{(- \frac{t}{\tau}) }

where V_0 is the initial voltage, and \tau is the time constant.

For our problem, we know

V_0 = 185 \ V

and

V(10 \ s) = V_0 e^{(- \frac{10 \ s}{\tau}) } = 1.64 \ V

So

185 \ V \ e^{(- \frac{10 \ s}{\tau}) } = 1.64 \ V

e^{(- \frac{10 \ s}{\tau}) } = \frac{1.64 \ V}{ 185 \ V }

ln (e^{(- \frac{10 \ s}{\tau}) } ) = ln (\frac{1.64 \ V}{ 185 \ V })

- \frac{10 \ s}{\tau}  = ln (\frac{1.64 \ V}{ 185 \ V })

\tau =  \frac{-10 \s}{ln (\frac{1.64 \ V}{ 185 \ V }) }

This gives us

\tau =  2.1161 s

and this is the time constant.

<h3>b.</h3>

At t = 18.8 s we got:

V(18.8 \ s) = 185 \ V  \ e^{(- \frac{18.8 \ s}{2.1161 s}) }

V(18.8 \ s) = 185 \ V \ e^{(- \frac{18.8 \ s}{2.1161 s}) }

V(18.8 \ s) = 0.0256 \ V

4 0
3 years ago
Other questions:
  • How is shooting a shotgun related to newtons third law ? why does a rifle have less “kick” then a shotgun ?
    14·1 answer
  • Kilogram is a unit of volume.<br> a. True<br> b. False
    14·1 answer
  • You are driving your 1700 kg car at 21 m/s down a hill with a 5.0∘ slope when a deer suddenly jumps out onto the roadway. You sl
    9·1 answer
  • Is this an example of an elastic collision or inelastic collision? A 200-kg bumper car stopped at an intersection is rear-ended
    15·1 answer
  • An intercontinental ballistic missile goes from rest to a speed of 6.50 km/s in 60.0 s. In multiples of g, what is its accelerat
    10·1 answer
  • Gibbons, small Asian apes, move by brachiation, swinging below a handhold to move forward to thenext handhold. A 9.3kggibbon has
    7·1 answer
  • What is the process that changes smaller atoms into larger ones in a star
    11·1 answer
  • Why do teenagers often feel invincible, like nothing bad can happen to them
    14·1 answer
  • What is the formula for disulfur trichloride
    12·2 answers
  • Factors that affect pressure in solids​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!