Answer:
Total momentum, p = 55 kg-m/s
It is given that,
Mass of player 1, m₁ = 85 kg
Mass of player 2, m₂ = 105 kg
Speed of player 1, v₁ = -8 m/s (west)
Speed of player 2, v₂ = 7 m/s (east)
Momentum is equal to the product of mass and velocity. For this system, momentum is given by :
p=m_1v_1+m_2v_2p=m
1
v
1
+m
2
v
2
p=85\ kg\times (-8\ m/s)+105\ kg\times 7\ m/sp=85 kg×(−8 m/s)+105 kg×7 m/s
p = 55 kg-m/s
The total momentum of the system made up of the two players is 55 kg-m/s.
<span>240,000 miles / hour²
Average acceleration can be calculated by dividing the change in speed by the elapsed time. Since the dragster's speed was 0 when the light turned green, the change in speed is simply 300 mph. Now, divide that by the time:
300 mph / 0.00125 hours = 240,000 miles / hour²
By the way, 0.00125 hours is just 4.5 seconds!</span>
Answer:
The lone pair of electrons occupy more space because the electrostatic force becomes weaker.
Explanation:
When there is a bond pair of electrons in the 2 positively charged the atomic nuclei draw the electron density towards them, thereby reducing the bond diameter.
In the case of the lone pair, only 1 nucleus is present, and the enticing electrostatic force becomes weaker and the intensity of the electrons will be increases. Therefore, the lone pair occupies more space than the pair of bonds.
Answer:
E = 1.711 MeV
Explanation:
From the law of the conservation of energy:

where,
the kinetic energy of positron and electron = 1.2 MeV
Rest energy of the electron and the positron = 0.511 MeV
E = Energy of Photon = ?
Therefore,

<u>E = 1.711 MeV</u>