Answer:
Sound waves are pushed closer together, decreasing wavelength
and increasing frequency.
Answer:
"Narrow the focus of research question"
Explanation:
O Narrow the focus of research question
This is good! You can still use your question, but focus in on something so you have a proper research project.
O Add another research question
Would adding another question to an already broad question help? No.
O Use the very first source you find for your project
If your question is too broad, you should not use whatever you see first as it may be incorrect or does not answer the question
O Change the scope of your project
You could, but if you have a set scope for your project (a) you might not be able to change it (b) you don't need to restart
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
Answer:
The wavelength of the visible line in the hydrogen spectrum is 434 nm.
Explanation:
It is given that, the wavelength of the visible line in the hydrogen spectrum that corresponds to n₂ = 5 in the Balmer equation.
For Balmer series, the wave number is given by :

R is the Rydberg's constant
For Balmer series, n₁ = 2. So,


or

So, the wavelength of the visible line in the hydrogen spectrum is 434 nm. Hence, this is the required solution.
Answer:
~The slope of the line on a velocity vs. time graph represents acceleration.
Explanation:
~~Acceleration is equal to the ratio between the change in velocity of an object and the time taken:
a=\frac{\Delta v}{\Delta t}a=
Δt
Δv
On a velocity-time graph, this ratio corresponds to the slope of the line. In fact, \Delta vΔv corresponds to the increment in the y-value (the velocity), while \Delta tΔt corresponds to the increment in the x-value (the time), therefore their ratio corresponds to the definition of slope of the line.
Answer:
A crane operator drops the cargo by turning off the electric current to the electromagnet. Electromagnets can be controlled by controlling the electric current. An electromagnet is stronger if there is more current flowing through it.
Explanation: