Answer:
The value is 
Explanation:
From the question we are told that
The mass of the bullet is 
The mass of the wood is 
The height attained by the combined mass is 
Generally according to the law of energy conservation

Here
is the kinetic energy of the bullet before collision.
and
is the potential energy of the combined mass of bullet and wood at the height h which is mathematically represented as
![PE_m = [m_b + m_w] * g * h](https://tex.z-dn.net/?f=PE_m%20%20%3D%20%20%5Bm_b%20%20%2B%20m_w%5D%20%2A%20%20g%20%2A%20%20h)
So
![KE_b =PE_c = [0.005 + 0.90] * 9.8 *0.08](https://tex.z-dn.net/?f=KE_b%20%3DPE_c%20%20%20%3D%20%5B0.005%20%20%2B%200.90%5D%20%2A%209.8%20%2A0.08)
=> 
Answer:
There will be 1800 W power consumption in heater
Explanation:
We have given current flowing in the heater I = 15 A
Voltage on which heater is operating V = 120 volt
We have to find the power consumption in the heater
We know that power consumption is given by P = VI
So power consumption in heater = 120 × 15 = 1800 W
So there will be 1800 W power consumption in heater
Explanation:
Given that,
The initial velocity of a skater is, u = 5 m/s
She slows to a velocity of 2 m/s over a distance of 20 m.
We can find the acceleration of skater. It is equal to the rate of change of velocity. So, it can be calculated using third equation of motion as follows :

a = acceleration

So, her acceleration is
and she is deaccelerating. Also, her initial velocity is given i.e. 5 m/s.
Answer:
Well the definition of an application is the act of putting to a special use or purpose so lam assuming that you want specific uses that scientists make of gravity in their work.
Well our first application has helped us to send satellites around the solar system with what Nasa calls gravity assist. Using a particular planets gravity to slingshot a satellite to another destination. Look it up.
The next application much simpler but here on Earth. There are many hydro-electric power stations in use all over the world. Water is stored at a high level and released falling 100s of metres to a turbine where it generates electricity.
Hope that helps.
Explanation:
Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force. We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.
If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as 588 newtons or as
132.3 pounds. That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.
If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is
y(t) = y₀ + M sin(2π t/15) .
The vertical speed of the deck is y'(t) = M (2π/15) cos(2π t/15)
and its vertical acceleration is y''(t) = - (2πM/15) (2π/15) sin(2π t/15)
= - (4 π² M / 15²) sin(2π t/15)
= - 0.1755 M sin(2π t/15) .
There's the important number ... the 0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.
The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of 0.1755 x amplitude).
At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of 65kg, when in reality it's only 60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.
Now I'm going to wave my hands in the air a bit:
Apparent weight = (apparent mass) x (real acceleration of gravity)
(Apparent mass) = (65/60) = 1.08333 x real mass.
Apparent 'gravity' = 1.08333 x real acceleration of gravity.
The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.
0.08333 G = 0.1755 M
The 'M' is what we need to find.
Divide each side by 0.1755 : M = (0.08333 / 0.1755) G
'G' = 9.0 m/s²
M = (0.08333 / 0.1755) (9.8) = 4.65 meters .
That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .