In step 1, to increase the potential energy, the iron will move towards the electromagnet.
In step 2, to increase the potential energy, the iron will move towards the electromagnet.
<h3>Potential energy of a system of magnetic dipole</h3>
The potential energy of a system of dipole depends on the orientation of the dipole in the magnetic field.

where;
is the dipole moment- B is the magnetic field


Increase in the distance (r) reduces the potential energy. Thus, we can conclude the following;
- In step 1, to increase the potential energy, the iron will move towards the electromagnet.
- In step 2, when the iron is rotated 180, it will still maintain the original position, to increase the potential energy, the iron will move towards the electromagnet.
Learn more about potential energy in magnetic field here: brainly.com/question/14383738
Answer: 27.21 V
Explanation:
The <u>electric potential</u>
due to a point charge is expressed as:

Where:
is the <u>electric constant</u>
is the <u>electric charge of the hydrogen nucleus</u>, which is positive
is the <u>distance</u>
Rewritting the equation with the known values:

Finally:
Answer:
Amplitude is decreased by a factor of
if intensity is decreased by a factor of 3.
Explanation:
Intensity of a sound wave is directly proportional to the square of its amplitude.
Therefore, if intensity is
and amplitude is
, then
, where,
is constant of proportionality.
Now, if intensity of sound wave is decreased by a factor of 3. So,
New intensity is, 

Plug in
for
. This gives,

Therefore, amplitude is decreased by a factor of
.
Explanation:
Average acceleration is change in velocity over time.
a = Δv / Δt
a = (22.0 m/s − (-25.0 m/s)) / 0.00350 s
a = 13,400 m/s²