Answer:
i think itd be an exothermic reaction
Explanation:
An exothermic process releases heat, causing the temperature of the immediate surroundings to rise.
Which two conditions can limit the usefulness of the kinetic-molecular theory in describing gas behavior? ... Increasing pressure is causing a smaller change in gas volume. The closeness of particles of gas and their low speeds allow intermolecular forces to become important at certain pressured and temperature.
Valence electrons are the electrons in the outermost shell. Those are t<span>he electrons on an atom that can be gained or lost in a chemical reaction.
</span>Elements that are left on the periodic table <span> have relatively few </span>valence electrons<span>, and can form ions more easily by losing their </span>valence electrons<span> to form positively charged cations.</span>
<span>Nonmetals are further to the right on the periodic table, so they gain electrons relatively easily and lose them with difficulty. </span>
Answer:
3.0x10⁻²M
Explanation:
Silver sulfate, Ag₂SO₄, has a product constant solubility equilbrium of:
Ag₂SO₄(s) ⇄ 2Ag⁺ + SO₄²⁻
When an excess of silver sulfate is added, some Ag₂SO₄ will react producing Ag⁺ and SO₄²⁻ until reach the equilbrium determined for the formula:
ksp = 1.4x10⁻⁵ = [Ag⁺]² [SO₄²⁻]
Assuming the Ag₂SO₄ that react until reach equilibrium is X, we can replace in Ksp expression:
1.4x10⁻⁵ = [Ag⁺]² [SO₄²⁻]
1.4x10⁻⁵ = [2X]² [X]
1.4x10⁻⁵ = 4X³
3.5x10⁻⁶ = X³
0.015 = X
As [Ag⁺] is 2X:
[Ag⁺] = 0.030 = 3.0x10⁻²M
The answer is:
<h3>3.0x10⁻²M</h3>
Answer:
the answer is the tropical rain forest