Answer:
See explanation below
Explanation:
To solve this problem, we need to use the expression of half life decay of concentration (or mass) which is the following:
m = m₀e^-kt (1)
In this case, k will be the constant rate of this element. This is calculated using the following expression:
k = ln2/t₁/₂ (2)
Let's calculate the value of k first:
k = ln2/2.7 = 0.2567 d⁻¹
Now, we can use the expression (1) to calculate the remaining mass:
m = 8.1 * e^(-0.2567 * 2.6)
m = 8.1 * e^(-0.6674)
m = 8.1 * 0.51303
m = 4.16 mg remaining
Hello!
To know how many moles of iron can be recovered from 100 kg of Fe₃O₄ we'll need to use the
molar mass of Fe₃O₄ and apply the conversion factor to go from kg of Fe₃O₄ to moles of Fe in the following way:

So, theoretically, one could recover
1192,68 moles of Fe from 100 kg of Fe₃O₄
Have a nice day!
Answer:Naoh and animal fats
Explanation:
Also perfume along with ones desire
Feel pleasure to help u
Answer:
greater than 115 N upwards
Explanation:
Answer:
Iodine is most reactive because it is very close to having a "full shell" which is 8 electrons so they are "eager" to gain the last electron to became balanced, so that makes it the most reactive. Hope that helps:)
Explanation: