Answer:
The correct answer is
C. 6 Protons
Explanation:
Carbon is a nonmetallic element that is available in both organic and inorganic compounds.
Carbon belongs to group 14 elements in the periodic table,carbon is a chemical element with the symbol C and atomic number 6, it can form long chains with its own atoms, a feature called catenation.
Two allotropes of carbon available are diamonds and graphites, which have different crystalline structures
The physical properties of carbon vary widely with the allotropic form.
examples are.
- Graphite, diamonds and coal are all nearly pure forms of carbon
- Diamond is highly transparent. Graphite is opaque and black
- Diamond is one of the hardest substances known to man. Graphite is soft and often used as the "lead" in lead pencils
- Diamond has a very low electrical conductivity. Graphite is a very good conductor
- Very brittle, and cannot be rolled into wires or pounded into sheets
In balancing equations, we aim to get equal numbers of every type of atom on both sides of the equation, in order to satisfy the law of conservation of mass (which states that in a chemical reaction, every atom in the reactants is reorganised to form products, without exception). Therefore, let me walk you through question a:
<span>_Fe + _ H2SO4 --> _Fe2 (SO4)3 + _H2
First, take a stock-check of exactly what we currently have on each side (assuming that each _ represents a 1):
LHS: Fe = 1, H = 2, S = 1, O = 4
RHS: Fe = 2, H = 2, S = 3, O = 12,
There are two things to note here. Firstly, H2 (it should be subscript in reality) represents two hydrogen atoms bonded together as part of the ionic compound H2SO4 (sulphuric acid) - this two only applies to the symbol which is directly before it. Hence, H2SO4 only contains 1 sulphur atom, because the 2 applies to the hydrogen and the 4 applies to the oxygen. Secondly, the bracket before the 3 (which should also be subscript) means that there is 3 of everything within the bracket - (SO4)3 contains 3 sulphur atoms and 12 oxygen atoms (4 * 3 = 12).
Now let's start balancing. As a prerequisite, you must keep in mind that we can only add numbers in front of whole molecules, whereas it is not scientifically correct to change the little numbers (we could have two sulphuric acids instead of one, represented by 2H2SO4 (where the 2 would be a normal-sized 2 when written down), but we couldn't change H2SO4 to H3SO4).
The iron atoms can be balanced by having two iron atoms on the left-hand side instead of one:
2Fe </span>+ _ H2SO4 --> _Fe2 (SO4)3 + _H2
Now let's balance the sulphur atoms, by multiplying H2SO4 by 3:
2Fe + 3H2SO4 --> _Fe2 (SO4)3 + _H2
This has the added bonus of automatically balancing the oxygens too. This is because SO4- is an ion, which stays the same in a displacement reaction (which this one is). Take another stock check:
LHS: Fe = 2, H = 6, S = 3, O = 12
RHS: Fe = 2, H = 2, S = 3, O = 12
The only mismatch now is in the hydrogen atoms. This is simple to rectify because H2 appears on its own on the right-hand side. Just multiply H2 by 3 to finish off, and fill the third gap with a 1 because it has not been multiplied up. Alternatively, you can omit the 1 entirely:
2Fe + 3H2SO4 --> Fe2 (SO4)3 + 3H2
This is the balanced symbol equation for the displacement of hydrogen with iron in sulphuric acid.
For question b, I will just show you the stages without the explanation (I take the 3 before B2 to be a mistake, because it makes no sense to use 3B2Br6 when B2Br6 balances fine):
<span>B2 Br6 + _ HNO 3 -->_B(NO3)3 +_HBr
B2Br6 + _HNO3 --> _B(NO3)3 + 6HBr
B2Br6 + 6HNO3 --> _B(NO3)3 + 6HBr</span>
<span><span>B2Br6 + 6HNO3 --> 2B(NO3)3 + 6HBr</span>
Hopefully you can get the others now yourself. I hope this helped
</span>
Answer:
<u>Reaction is called exergonic when ΔG is negative i.e. ΔG < 0</u>
Explanation:
The Gibbs free energy represents the spontaneity or feasibility of a given chemical reaction at constant pressure and temperature and is given by the equation:
ΔG = ΔH - TΔS
Here, ΔG - change in the Gibbs free energy
ΔS - change in the entropy
ΔH - change in the enthalpy
T - temperature
If the value of <u>ΔG for a chemical reaction is positive i.e. ΔG > 0</u>, then the given chemical reaction is said to be nonspontaneous. Such a reaction is called endergonic.
Whereas, if the <u>ΔG value for a chemical reaction is negative i.e. ΔG < 0</u>, then the given chemical reaction is said to be spontaneous. Such a reaction is called exergonic.
Answer:
the atom is held together by the electrostatic attraction between the positively charged nucleus and the negatively charged electrons surrounding it, the stability within chemical bonds is also due to electrostatic attractions.
Explanation:
Answer:
Following are the solution to this question:
Explanation:
If the draw a line perpendicular with y-axis thru the diagonal line check but it meets only one curved point, therefore the curve indicates a function not otherwise. They draw a vertical line perpendicular to the y-axis there, it just intersects one more chart point, which is why a graph is a feature:
In point a:
In point b:
Its y-axis length cut also by understanding the benefits of y-interception and the x-axis length gives the x-intercept.

In point C:
Every graph is y-axis symmetric because the left side of the column as well as the middle side of the graph is about the same.