Answer:
V₂ = 15.3
Explanation:
Given data:
Initial volume = 12.0 L
Initial temperature = 20°C
Final temperature =100°C
Final volume = ?
Solution:
First of all we will convert the temperature into kelvin.
20°C + 273 = 293 K
100°C + 273 = 373 K
Formula:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 12.0 L × 373 K / 293 k
V₂ = 4476 L.K /293 k
V₂ = 15.3
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Equilibrium occurs when the rate of the forward reaction is the same as the rate of the reverse reaction. This doesn't necessarily mean the concentrations or pressure are the same on both sides of the equation, only the rates are the same
<h2>Answer:</h2>

<h2>Explanations</h2>
The complete balanced equation for the given reaction is expressed as;

Given the following parameters
Mass of CH4 = 5.90×10^−3 g = 0.0059grams
Determine the moles of methane

According to stoichimetry, 1 mole of methane produces 2 moles of water, hence the moles of water required will be:

Determine the mass of water produced

Therefore the mass of water produced from the complete combustion of 5.90×10−3 g of methane is 1.33 * 10^-2grams
Answer:
See explanation
Explanation:
The question is incomplete but i will try to give you all the necessary guide that you need in order to answer the question.
When compounds are formed, atoms exchange valency. The valency of nitrogen is three while that of the metal is two. The exchange yields M3N2.
If the compound has been specifically mentioned to be a metal, then it must be a group two element. It could be any of Mg, Ca, Sr, Ba or Ra. I did not mention Be here because most of its compounds are covalent.
This will help you to answer the complete question.
Answer:
It is a eukaryotic organism
It belongs to kingdom protista
It does not have membrane bounded organelles
Explanation: