Answer:
Nuclear power comes from nuclear fission
Nuclear power plants use heat produced during nuclear fission to heat water. In nuclear fission, atoms are split apart to form smaller atoms, releasing energy. Fission takes place inside the reactor of a nuclear power plan
Explanation:
<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:

We are given:
Mass of
= 39.963998 u
Mass of
= 39.962591 u
To calculate the mass defect, we use the equation:

Putting values in above equation, we get:

To calculate the energy released, we use the equation:

(Conversion factor:
)

Hence, the energy released in the given nuclear reaction is 1.3106 MeV.
Answer:
13.5 g
Explanation:
This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.
Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.
number of moles = n = mass of Al / Atomic Weight Al
⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹
= 13.5 g
We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.
Answer:
HCl(aq) + KOH(aq) --> KCl(aq) + H2O(l)
Explanation:
A neutralization reaction is the process between an acid and a base (there are a number of different ways to define acids and bases). An acid is a compound, which dissolves in water by releasing H+ ions, and a base is a compound, which dissolves in water by releasing OH- ions (by Arrhenius' definition, the simplest one). In this case, the neutralization reaction is the process between HCl (hydrochloric acid) - an acid, and KOH (potassium hydroxide) - a base.
Answer:
See detailed explanation.
Explanation:
Hello!
i. In this case, since the given chemical reaction is exothermic due to the negative change in the enthalpy of reaction, we infer that according to the mentioned principle, by lowering the temperature the reaction will shift rightwards and therefore the yield is increased; thus, you need a lower temperature than the specified.
ii. In this case, since the reaction has less moles at the products side, according to the mentioned principle it'd be necessary to rise the pressure in order to increase the yield, since the increase of pressure favors the reaction side with the fewest number of moles.
Best regards!