The high surface tension helps the paper clip - with much higher density - float on the water. The property of the surface of a liquid that allows it to resist an external force, due to the cohesive nature of its molecules.
Basically it means that there is a sort of skin on the surface of water where the water molecules hold on tight together. If the conditions are right, they can hold tight enough to support your paper clip. The paperclip is not truly floating, it is being held up by the surface tension.
Answer:
[CaCl₂] = 1.32 M
Explanation:
We know the volume of solution → 0.30 L
We know the mass of solute → 44 g of CaCl₂
Let's convert the mass of solute to moles.
44 g . 1 mol / 110.98 g = 0.396 moles
Molarity (mol/L) → 0.396 mol / 0.3 L = 1.32 M
Answer:
Option C
Explanation:
The answer is option C or "The amount of time it takes to rotate around it's axis is the same amount of time it takes to revolve around Earth."Remember that the Earth and the Moons amount of time to make a full rotation is almost in sync and they're two sides of the moon, one side we do not see and that's because that side is currently faced away from the Earth which is called the dark side of the moon. Each side has two weeks oh night, and two weeks of day because of how long it takes the moon to revolve, so while we have a side towards the Earth which is illuminated by the sun we have another pointing away in the dark.
Hope this helps.
Answer:
a. 0.5 mol
b. 1.5 mol
c. 0.67
Explanation:
Fe3+ + SCN- -----> [FeSCN]2+
a. The ratio of the product to Fe3+ is 1:1. Meaning that if 0.5 mol of product was produced up then 0.5 mol of Fe3+ was used. Leaving 0.5 mol remaining at equilibrium
b. The ratio of the product to SCN= is 1:1. Meaning that if 0.5 mol of product was produced up then 0.5 mol of SCN- was used. Leaving 1.5 mol remaining at equilibrium
c. KC = 0.5/(0.5*1.5) = 0.67
K:
m=155g
M=39g/mol
n = 155g / 39g/mol ≈ 3,97mol
KNO₃:
m=122g
M=101g/mol
n = 122g/101g/mol = 1,21mol
2K + 10KNO₃ ⇒ 6K₂O + N₂
2mol : 10mol
3,97mol : 1,21mol
limiting reagent
KNO₃ is limiting reagent