Answer:
1. 2.04 W/m²
2. 1.63°C
Explanation:
The radiative force that the Earth receives comes from the Sun. When the Sun rays come to the surface, some of them are absorbed and then it is reflected in the space. The greenhouse gases (like CO2) blocks some of these rays, and then the surface stays warm. The excessive amount of these gases makes the surface warmer, which unbalance the climate on Earth.
1. The variation of the radiative forcing can be calculated based on the concentration of the CO2 by the equation:
ΔF = 5.35*ln(C/C0)
Where C is the final concentration, and C0 is the initial concentration.
ΔF = 5.35*ln(410/280)
ΔF = 2.04 W/m²
2. The temperature change in the Earth's surface caused by the variation of the radiative forcing can be calculated by:
ΔT = 0.8*ΔF
ΔT = 0.8*2.04
ΔT = 1.63 K = 1.63°C
Answer:
0.9612 g
Explanation:
First we <u>calculate how many moles are there in 3.00 g of CCl₃F</u>, using its <em>molar mass</em>:
- 3.00 g CCl₃F ÷ 137.37 g/mol = 0.0218 mol CCl₃F
Now, we need to calculate how many grams of N₂O would have that same number of molecules, or in other words, <em>the same amount of moles</em>.
Thus we <u>calculate how many grams would 0.0218 moles of N₂O weigh</u>, using the <em>molar mass of N₂O</em> :
- 0.0218 mol N₂O * 44.013 g/mol = 0.9612 g N₂O
A fusion reaction takes place between carbon and another element. Neutrons are released, and a different element is formed. The different element is Lighter than helium.
Answer:
C15 H31 O4 S
Explanation:
molecular formula is also the same because the value of "n" is 1