Answer:
12.02 g
Explanation:
From the question given above, the following data were obtained:
Half life (t½) = 2 days
Original amount (N₀) = 96 g
Time (t) = 6 days
Amount remaining (N) =..?
Next, we shall determine the rate of disintegration of the isotope. This can be obtained as follow:
Half life (t½) = 2 days
Decay constant (K) =?
K = 0.693 / t½
K = 0.693 / 2
K = 0.3465 /day
Therefore, the rate of disintegration of the isotope is 0.3465 /day.
Finally, we shall determine the amount of the isotope remaining after 6 days as follow:
Original amount (N₀) = 96 g
Time (t) = 6 days
Decay constant (K) = 0.3465 /day.
Amount remaining (N) =.?
Log (N₀/N) = kt / 2.303
Log (96/N) = (0.3465 × 6) / 2.303
Log (96/N) = 2.079/2.303
Log (96/N) = 0.9027
Take the anti log of 0.9027
96/N = anti log (0.9027)
96/N = 7.99
Cross multiply
96 = N × 7.99
Divide both side by 7.99
N = 96 /7.99
N = 12.02 g
Therefore, the amount of the isotope remaining after 6 days is 12.02 g
Answer:
Explanation:
Mitochondria are a part of eukaryotic cells. The main job of mitochondria is to perform cellular respiration. This means it takes in nutrients from the cell, breaks it down, and turns it into energy. This energy is then in turn used by the cell to carry out various functions.
Answer:
As you used two diferent instruments, one is more sensitive than the other.
Explanation:
The sensitivity of an instrument is the minimum amount of magnitude that can be differentiate a measurement system.
In method A, you got 27 cm, so if in method B, you got 27.00, method B is more sensitive. It's like saying that one system measures more than the other
Goto ----> prize.gg to claim your robux PRIZE!!!!