Answer:
the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Explanation:
The computation of the magnitude of the each force is shown below:
Provided that
Ratio of forces = 3: 5
Let us assume the common factor is x
Now
first force = 3x
And, the second force = 5x
Resultant force = 35 N
The Angle between the forces = 60 degrees
Based on the above information
Resultant force i.e. F = √ F_1^2 +F_2^2 + 2 F_1F_2cos
35 = √[(3x)²+ (5x)²+ 2 (3x)(5x) cos 60°]
35 =√ 9x² + 25x² + 15x² (cos 60° = 0.5)
35 = √49 x²
x = 5
So, the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
Stress is defined as force per unit area and strain is defined as proportional deformation in a material.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight
l = length of wire
A = area of cross section
= change in length
Hence, the correct answer is Option b.
Answer:
Elements in Group 14 could lose four, or gain four electrons to achieve a noble gas structure. In fact, if they are going to form ions, Group 14 elements form positive ions. Carbon and silicon form covalent bonds. Carbon's millions of organic compounds are all based on shared electrons in covalent bonds.
Explanation:
Total distance travelled by the car is 'd'
<span>distance trveled before the brakes were applied = v_o * t </span>
<span>distance travld with brakes = d - v_o*t </span>
<span>applying the formula: v^2 - u^2 = -2 a * s </span>
<span>=> 0 - v_o^2 = -2 * a_x * (d- v_o*t) </span>
<span>=> a_x = (v_o^2)/ ( 2 (d-v_o*t)</span>