We can use the ideal gas equation which is expressed as PV = nRT. At a constant volume and number of moles of the gas the ratio of T and P is equal to some constant. At another set of condition, the constant is still the same. Calculations are as follows:
T1/P1 = T2/P2
P2 = T2 x P1 / T1
P2 = 273 x 340 / 713
<span>P2 = 130 kPa</span>
Answer:
Option A
D = m/v
Explanation:
Density is defined as mass per unit volume of an object. Therefore, D=m/v where m is the mass of the object and v is the volume
Therefore, option A is the right option
-- There is no need to develop the pictures. They are available immediately in a digital camera.
-- There is no change in the teacher from one picture to the next.
-- The distance the watermelon falls from the teacher in each new picture is more in each picture than in the picture before it. (C)
Because the liver helps to regulate blood clotting, people<span> with liver disease (for example, hepatitis or cirrhosis) also have a tendency to </span>bleed<span> easily. Most commonly, easy or excessive bruising occurs because the skin and blood vessels are fragile.
Hope This Helped! :3</span>
Answer:
Rebounce angle is 345°
Rebounce speed is 989.95m/s
Explanation:
Calculate the x component of the velocity of the bullet before impact by using the following relation:
Vbx= Vb Cos thetha
Here, is the initial velocity of the bullet, Vo = 1400m/s and is the incidence angle of the bullet.= theta = 15°
Substituting
Vbx = Cos15 ×1400 = 1352.30m/s
Calculate the y component using the relation:
Vby = Vo Sin theta
Vby = sin 15° × 1400
Vby = 362.35m/s
The rebounce angle = 360 - incidence angle
Rebounce angle =( 360 - 15)° = 345°
The rebound speed V' = Vby - Vbx
V' = (1352.30 - 362.35)m/s
V' = 989.95 m/s