Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂=
= 6.57 m/s
<span>The person is dragging
with a force of 58 lbs at an angle of 27 degrees relating to the ground. We
want to use cosine function to look for the horizontal force component. And
then we can compute for W = (Horizontal Force) x (Distance). We want the
horizontal force component since that is the component that is parallel to the
direction the cart is moving. </span><span>
(cos 27 degrees)(58 lbs) = 51.69 lbs (This is the horizontal
force component.)
W = (51.69 lbs) x (70 ft) = 3618.3 ft*lbs</span>
A. The English system uses one unit for each category of measurement.
Data:
mass, m = 30.94 g
density, d = 19.32 g/cm^3
Formula: d = m / v => v = m / d = 30.94 g / 19.32 g/cm^3 = 1.60 cm^3
Then, the answer is the option C.
Answer:
The shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
Explanation:
Given;
wavelength of ultraviolet light, λ = 270 nm
work function of the metal, φ = 2.3 eV = 2.3 x 1.602 x 10⁻¹⁹ J = 3.685 x 10⁻¹⁹ J
The energy of the ultraviolet light is given by;

The energy of the incident light is related to kinetic energy of the electron and work function of the metal by the following equation;
E = φ + K.E
K.E = E - φ
K.E = (7.362 x 10⁻¹⁹ J) - (3.685 x 10⁻¹⁹ J )
K.E = 3.677 x 10⁻¹⁹ J
K.E = ¹/₂mv²
mv² = 2K.E
velocity of the electron is given by;

the shortest de Broglie wavelength for the electrons is given by;

Therefore, the shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm