Answer:
The maximum emf that can be generated around the perimeter of a cell in this field is
Explanation:
To solve this problem it is necessary to apply the concepts on maximum electromotive force.
For definition we know that
Where,
N= Number of turns of the coil
B = Magnetic field
Angular velocity
A = Cross-sectional Area
Angular velocity according kinematics equations is:
Replacing at the equation our values given we have that
Therefore the maximum emf that can be generated around the perimeter of a cell in this field is
Answer:
(a) = 0 N
(b) = 2.4 N
Explanation:
given
box of banana weight = 40.0 N
coefficient of static friction μ = 0.40
coefficient of kinetic friction = 0.20
a). when no horizontal force is applied .
according to Newton 's third law of motion If there is no force applied to the box,so the frictional force exerted is 0 N
b) magnitude of friction force
box and the box is initially at rest
friction force =.Static friction coefficient × weight of the box
friction force = 0.40 × 6
friction force = 2.4 N
Answer:
ΔL = 0.66 m
Explanation:
The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:
ΔL = αLΔT
where,
ΔL = Change in Length of the bridge = ?
α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹
L = Original Length of the Bridge = 1000 m
ΔT = Change in Temperature = Final Temperature - Initial Temperature
ΔT = 40°C - (-20°C) = 60°C
Therefore,
ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)
<u>ΔL = 0.66 m</u>
An ice cube would transfer heat to another object whose temperature
is lower than zero°C (32°F).
A block of "dry ice" is sitting there at a temperature of -78°C (-109°F).
An ice cube helps to melt dry ice nice and fast.
If you could find a block of solid nitrogen, its temperature would be
63K (-210°C, -346°F). An ice cube would transfer heat to that baby
so fast that it would instantly boil.
I believe it’s A. I know for sure it isn’t D.