Answer:
Explanation:The equation for this is F = -GmM/R^2 where the minus sign says the force is attractive m is 10 kg, M is 20 kg and R is 5 meters. If you crunch the numbers you get an answer of:
Answer:
The reaction is exothermic and ΔH is negative
Explanation:
An exothermic reaction is a chemical reaction that releases energy in the form of heat. It is the opposite of an endothermic reaction in which energy is absorbed. It is expressed in a general thermochemical equation: reactants → products + energy.
We can know that a reaction is exothermic by observing the calorimeter to know if there is an increase in temperature. Remember that an exothermic reaction leads to evolution of heat. This is observed physically as a rise in temperature.
The calorimeter initially read 21.0 and finally read 38.8 at the end of the reaction. This implies that heat was given out in the process. The reaction is exothermic and ∆H is negative.
is the product of the mass and velocity of an object, quantified in kilogram-meters per second.
At a particular temperature, the solubility of He in water is 0.060 M when the partial pressure is 0.90 atm. 2.27 atm is the partial pressure of Kr would give a solubility of 0.150 M.
<h3>
What is Henry's Law ?</h3>
- According to Henry's law, the weight of a gas dissolved by a liquid is proportional to the pressure of the gas onto the liquid.
- With very few exceptions, a solute molecule in an extremely diluted solution will only have solvent molecules as its close neighbors. This means that the likelihood that a specific solute molecule will escape into the gas phase is predicted to be independent of the total concentration of solute molecules.
Solution:
The solubility of gas is directly proportional to partial pressure. It is expressed as:
S = 
where, S = Solubility of gas
= Henry's Law constant
= Partial pressure of gas
Now, put the values in above expression we get
0.060M =
× 0.9 atm
= = 0.066 M/atm
Now we have to find the partial pressure of He
0.150 M = 0.066 M/atm × 
= 2.27 atm
Learn more about the Henry's Law : brainly.com/question/23204201
#SPJ4
The reaction equation:
2H₂O + 2Na₂O₂ → 4NaOH + O₂
Moles of sodium peroxide = 10 / 78 = 0.128
Moles of oxygen released = 0.128 / 2 = 0.064 mol
Mass of oxygen = 0.064 x 32
Mass of oxygen = 2.05 grams