Answer:
44 grams of CO₂ will be formed.
Explanation:
The balanced reaction is:
C + O₂ → CO₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- C: 1 mole
- O₂: 1 mole
- CO₂: 1 mole
Being the molar mass of each compound:
- C: 12 g/mole
- O₂: 32 g/mole
- CO₂: 44 g/mole
By stoichiometry the following mass quantities participate in the reaction:
- C: 1 mole* 12 g/mole= 12 g
- O₂: 1 mole* 32 g/mole= 32 g
- CO₂: 1 mole* 44 g/mole= 44 g
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
If 12 grams of C react, by stoichiometry 32 grams of O₂ react. But you have 40 grams of O₂. Since more mass of O₂ is available than is necessary to react with 12 grams of C, carbon C is the limiting reagent.
Then by stoichiometry of the reaction, you can see that 12 grams of C form 44 grams of CO₂.
<u><em>44 grams of CO₂ will be formed.</em></u>
Answer:
<h2>5 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>5 m/s²</h3>
Hope this helps you
Answer:
natural disasters
Explanation:
Drought.
Earthquake.
Flash flood.
Hurricane.
Tornado.
Wild fire.
Winter storm.
these are some examples, hope this helps :)
Answer:
3.72 mol Hg
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Density = Mass over Volume
Explanation:
<u>Step 1: Define</u>
D = 13.6 g/mL
54.8 mL Hg
<u>Step 2: Identify Conversions</u>
Molar Mass of Hg - 200.59 g/mol
<u>Step 3: Find</u>
13.6 g/mL = x g / 54.8 mL
x = 745.28 g Hg
<u>Step 4: Convert</u>
<u />
= 3.71544 mol Hg
<u>Step 5: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.71544 mol Hg ≈ 3.72 mol Hg