Answer: hey nice to see you again, the answer is B. Microscopes allowed scientists to see the cells.
Explanation:
Answer:
2726.85 °C
Explanation:
Given data:
Initial pressure = 565 torr
Initial temperature = 27°C
Final temperature = ?
Final pressure = 5650 torr
Solution:
Initial temperature = 27°C (27+273 = 300 K)
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
T₂ = P₂T₁ /P₁
T₂ = 5650 torr × 300 K / 565 torr
T₂ = 1695000 torr. K /565 torr
T₂
= 3000 K
Kelvin to degree Celsius:
3000 K - 273.15 = 2726.85 °C
The mass of pentane the student should weigh out is
The density of pentane is 0.626 gcm-3
To calculate the mass of pentane following expression is used,
(Density is defined as the mass divide by volume)
Density = mass / volume
mass of pentane = Density of pentane * Volume of pentane
mass of pentane = 0.626 gcm-3 * 45.0 mL
= 28.17 g
Here the unit of mass of pentane is g,
However the unit of density is gcm-3 and unit of volume is mL i.e. cm3
Hence, Mass = gcm-3 * cm3
Mass = g
The mass of pentane the student should weigh out is 28.17g
Learn more about Density on
brainly.com/question/1354972
#SPJ1
1. A 2. B 5. B this is all I know hope it helps
Answer:
A)
<u>4, 7, 4, 6</u>
B)
<u>12 moles</u>
Explanation:

__↑______↑
8.00 mol | 14.00 mol
________________

You can turn this into a system of variables which are solvable.
To do this, create variables for the coefficients of each compound in the reaction respectively.

Because to be balanced, the count of atoms in each element of the compound correspond to the coefficient of the variable in that compound so that the count of the left (reactant) side is set equal to the right (product) side.
a corresponds to the coefficient of the first compound, b corresponds to the coefficient of the second compound, c corresponds to the coefficient of the third compound, and d corresponds to the coefficient of the fourth compound.
(Reactant = Product)
Reactant: 1a [N] Product: 1c.
Reactant: 3a [H] Product: 2d.
Reactant: 2b [O] Product: 2c + 1d.
Thus the system is:
1a = 1c
3a = 2d
2b = 2c + 1d.
Then just use the substitution methods to solve.