First, we need to get the number of moles:
from the reaction equation when Y4+ takes 4 electrons and became Y, X loses 4 electrons and became X4+
∴ the number of moles n = 4
we are going to use this formula:
㏑K = n *F *E/RT
when K is the equilibrium constant = 4.98 x 10^-5
and F is Faraday's constant = 96500
and the constant R = 8.314
and T is the temperature in Kelvin = 298 K
and n is number of moles of electrons = 4
so, by substitution:
㏑4.98 x 10^-5 = 4*96500*E / 8.314*298
∴E = -0.064 V
Answer:
(B) F⁻, HCOOH
Explanation:
(A) CH₄, HCOOH
(B) F⁻, HCOOH
(C) F⁻, CH₃-O-CH₃
The hydrogen bonds are formed when the hydrogen is found between two electronegative atoms such as oxygen (O), nitrogen (N) or florine (F).
O····H-O, F····H-O, O····H-N
(A) CH₄, HCOOH
- here methane CH₄ is not capable to form hydrogen bond with water
- formic acid HCOOH can form hydrogen bonds with water
H-C(=O)-O-H····OH₂
(B) F⁻, HCOOH
-both floride (F⁻) and formic acid can form hydrogen bonds with water
F····OH₂
H-C(=O)-O-H····OH₂
(C) F⁻, CH₃-O-CH₃
- dimethyl-ether CH₃-O-CH₃ is not capable to form hydrogen bond with water
- floride (F⁻) can form hydrogen bonds with water
F····OH₂
It’s intrusive, and is one that forms when magma cools within Earth