Force = Work/distance
Force = 150/10
= 15 Newtons
Force = 15 Newtons
Therefore, 15 newtons of force is applied to the body when 150 joules of work
is done in displacing the body through a distance of 10m in the direction of the force.
Wouldn't it be neat if an electron falling closer to the nucleus ... emitting a
photon ... actually gave out more energy than it needed to climb to its original
energy level by absorbing a photon ! If there were some miraculous substance
that could do that, we'd have it made.
All we'd need is a pile of it in our basement, with a bright light bulb over the pile,
connected to a tiny hand-crank generator.
Whenever we wanted some energy, like for cooking or heating the house, we'd
switch the light bulb on, point it towards the pile, and give the little generator a
little shove. It wouldn't take much to git 'er going.
The atoms in the pile would absorb some photons, raising their electrons to higher
energy levels. Then the electrons would fall back down to lower energy levels,
releasing more energy than they needed to climb up. We could take that energy,
use some of it to keep the light bulb shining on the pile, and use the extra to heat
the house or run the dishwasher.
The energy an electron absorbs when it climbs to a higher energy level (forming
the atom's absorption spectrum) is precisely identical to the energy it emits when
it falls back to its original level (creating the atom's emission spectrum).
Energy that wasn't either there in the atom to begin with or else pumped
into it from somewhere can't be created there.
You get what you pay for, or, as my grandfather used to say, "For nothing
you get nothing."
Answer:

Explanation:
As we know that when electron moved in electric field then work done by electric field must be equal to the change in kinetic energy of the electron
So here we have to find the work done by electric field on moving electron
So we have



now the distance moved by the electron is given as

so we have



now we have to convert it into keV units
so we have

