The energy transfer in terms of work has the equation:
W = mΔ(PV)
To be consistent with units, let's convert them first as follows:
P₁ = 80 lbf/in² * (1 ft/12 in)² = 5/9 lbf/ft²
P₂ = 20 lbf/in² * (1 ft/12 in)² = 5/36 lbf/ft²
V₁ = 4 ft³/lbm
V₂ = 11 ft³/lbm
W = m(P₂V₂ - P₁V₁)
W = (14.5 lbm)[(5/36 lbf/ft²)(4 ft³/lbm) - (5/9 lbf/ft²)(11 lbm/ft³)]
W = -80.556 ft·lbf
In 1 Btu, there is 779 ft·lbf. Thus, work in Btu is:
W = -80.556 ft·lbf(1 Btu/779 ft·lbf)
<em>W = -0.1034 BTU</em>
Answer:
The x-component of
is 56.148 newtons.
Explanation:
From 1st and 2nd Newton's Law we know that a system is at rest when net acceleration is zero. Then, the vectorial sum of the three forces must be equal to zero. That is:
(1)
Where:
,
,
- External forces exerted on the ring, measured in newtons.
- Vector zero, measured in newtons.
If we know that
,
,
and
, then we construct the following system of linear equations:
(2)
(3)
The solution of this system is:
, 
The x-component of
is 56.148 newtons.
D. Jupiter has the highest amount of gravity in our solar system