Answer:
Electrolytes are salts or molecules that ionize completely in solution. As a result, electrolyte solutions readily conduct electricity. Nonelectrolytes do not dissociate into ions in solution; nonelectrolyte solutions do not, therefore, conduct electricity
Explanation:
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
Answer:
AM has longer wavelength
Explanation:
The relation between the wavelength and teh frequency is given by
v = f x λ
Where, f is the frequency and λ be the wavelength.
It shows that the wavelength is inversely proportional to the frequency.
So, higher the frequency, smaller be the wavelength.
So, FM has high frequency than AM, thus, FM has lower wavelength as compared to AM.
Answer: Energy requirement or consumption also increases as frequency goes higher. Hence, those low-frequency to mid-frequency waves are commonly referred to as radio waves and essentially, they have longer wavelengths. On the other hand, microwaves have higher frequencies and shorter wavelengths.
Explanation: therefore that's why they don't travel faster.
Answer:
distance = 21.56 m
Explanation:
given data
mass = 50 kg
initial velocity = 18.2 m/s
force = -200 N ( here force applied to opposite direction )
final velocity = 12.6 m/s
solution
we know here acceleration will be as
acceleration a = force ÷ mass
a =
= -4 m/s²
we get here now required time that is
required time =
...............1
put here value
required time =
so distance will be
distance =
........2
distance =
distance = 21.56 m