Answer:
a)
b)
c)
d)
m
e)λ=∞
Explanation:
De Broglie discovered that an electron or other mass particles can have a wavelength associated, and that wavelength (λ) is:

with h the Plank's constant (
) and P the momentum of the object that is mass (m) times velocity (v).
a)

b)

c)

d)
m
e) 
λ=∞
Answer:

Explanation:
In series combination, the equivalent resistance is given by :

Let the identical resistors be R. We have, 
So,

So, the resistance of each resistor is
.
Answer:
(a) 7 m
(b) 1 m
Explanation:
Given:
The magnitude of displacement vector 'a' is 3 m
The magnitude of displacement vector 'b' is 4 m.
The vector 'c' is the vector sum of vectors 'a' and 'b'.
(a)
Now, when the angle between the vectors is 0°, it means that the vectors are in the same direction. When vectors are in the same direction, then their resultant magnitude is simply the sum of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in same direction is given as:

Therefore, the magnitude of vector 'c' is 7 m when angle between 'a' and 'b' is 0°.
(b)
When the angle between the vectors is 180°, it means that the vectors are exactly in the opposite direction. When the vectors are in opposite direction, then their resultant magnitude is the subtraction of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in opposite direction is:

Therefore, the magnitude of vector 'c' is 1 m when angle between 'a' and 'b' is 180°.
D) Less than 20.
Explanation:
Equivalent resistance in a parallel combination is less than their individual value.