Answer:
the magnitude of the electric force on the projectile is 0.0335N
Explanation:
time of flight t = 2·V·sinθ/g
= (2 * 6.0m/s * sin35º) / 9.8m/s²
= 0.702 s
The body travels for this much time and cover horizontal displacement x from the point of lunch
So, use kinematic equation for horizontal motion
horizontal displacement
x = Vcosθ*t + ½at²
2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²
a = -2.23 m/s²
This is the horizontal acceleration of the object.
Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only
Therefore,the magnitude of the electric force on the projectile will be
F = m*|a|
= 0.015kg * 2.23m/s²
= 0.0335 N
Thus, the magnitude of the electric force on the projectile is 0.0335N
Answer:
The magnetic field is strongest at the center and weakest between the two poles just outside the bar magnet. The magnetic field lines are densest at the center and least dense between the two poles just outside the bar magnet.
Explanation:
Im pretty sure its A cuz is closer to the earth.
Answer:
2 hours
Explanation:
The motorcycle travels 40 km per hour.
80km / 40km/h = 2 hours.
Answer:
The ratio is 
Explanation:
The diagram for this question is shown on the first uploaded image
Here we are assume the acceleration of the train is a
which makes the acceleration of each car a
From the question we are told that
Considering the second car
The force causing it s movement is mathematically represented as

Considering the first car
The force causing it s movement is mathematically represented as

=> 
=> 
=> 
=> 