The greatest height the ball will attain is 3.27 m
<h3>Data obtained from the question</h3>
- Initial velocity (u) = 8 m/s
- Final velocity (v) = 0 m/s (at maximum height)
- Acceleration due to gravity (g) = 9.8 m/s²
The maximum height to which the ball can attain can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
0² = 8² – (2 × 9.8 × h)
0 = 64 – 19.6h
Collect like terms
0 – 64 = –19.6h
–64 = –19.6h
Divide both side by –19.6
h = –64 / –19.6h
h = 3.27 m
Thus, the greatest height the ball can attain is 3.27 m
Learn more about motion under gravity:
brainly.com/question/13914606
Answer:
Time interval;Δt ≈ 37 seconds
Explanation:
We are given;
Angular deceleration;α = -1.6 rad/s²
Initial angular velocity;ω_i = 59 rad/s
Final angular velocity;ω_f = 0 rad/s
Now, the formula to calculate the acceleration would be gotten from;
α = Change in angular velocity/time interval
Thus; α = Δω/Δt = (ω_f - ω_i)/Δt
So, α = (ω_f - ω_i)/Δt
Making Δt the subject, we have;
Δt = (ω_f - ω_i)/α
Plugging in the relevant values to obtain;
Δt = (0 - 59)/(-1.6)
Δt = -59/-1.6
Δt = 36.875 seconds ≈ 37 seconds
Answer:
From you getting close to them
Explanation:
Because its big brain time.
Hi! Check out my valid counter argument below!
"The accident only released harmless gamma rays."
Hope I helped!
Answer:
The center of mass of three mass in the x-y plane is located at (1,0.5).
Explanation:
It is given that, a mass of 6 kg is at (0,0), a mass of 4 kg is at (3,0), and a mass of 2 kg is at (0,3). We need to find the center of mass of the system. Center of mass in x direction is :

The center of mass in y direction is :

So, the center of mass of three mass in the x-y plane is located at (1,0.5).