This is what i have found i hope this helps
Moles of potassium permanganate = 0.0008
<h3>Further explanation </h3>
Titration is a procedure for determining the concentration of a solution by reacting with another solution which is known to be concentrated (usually a standard solution). Determination of the endpoint/equivalence point of the reaction can use indicators according to the appropriate pH range
Reaction
5Na2C2O4(aq) + 2KMnO4(aq) + 8H2SO4(aq) ---> 2MnSO4(aq) + K2SO4(aq) + 5Na2SO4(aq) + 10CO2(g) + 8H2O(1)
The end point ⇒titrant and analyte moles equal
titrant : potassium permanganate-KMnO4
analyte : sodium oxalate - Na2C2O4
so moles of KMnO4 = moles of Na2C2O4
moles of Na2C2O4(mass = 0.2640 g, MW=134 g/mol) :

From equation, mol ratio Na2C2O4 : KMnO4 = 5 : 2, so mol KMnO4 :

The given balanced reaction is,

The stoichiometric coefficients of each element or compound represents the number of moles of that element or compound required for the complete reaction to take place.
The mole ratios of different products and reactants will be:



So the mole ratio comparing iron (Fe) and oxygen gas (
) is
4 : 3
Answer: 0,4278g of F and 0,4191g of Fe
Explanation: it's possible to calculate the mass of each element by multiplying the percentage (decimal) of the element by the mass of the compound.
For Fluorine (F)
0,847g * 0,5051 = 0,4278g of F
For iron (Fe)
0,847 * 0,4949 = 0,4191g of Fe
This is determined because even when the compound is decomposed, due to conservative law of mass, the decomposition process do not affect the amount of matter, so the mass of the elements remain even if they are separated from the original molecule.
At the end, the sum of the elements masses should be the total mass of the compound.
Answer:
use secondary data. the normal method to use