Answer:
³⁸₂₀Ca.
Explanation:
³⁸₁₉K –> __ + ⁰₋₁β
Let ʸₓA represent the unknown.
Thus the equation above can be written as:
³⁸₁₉K –> ʸₓA + ⁰₋₁β
Thus, we can obtain the value of y an x as follow:
38 = y + 0
y = 38
19 = x + (–1)
19 = x – 1
Collect like terms
19 + 1 = x
x = 20
Thus,
ʸₓA => ³⁸₂₀A => ³⁸₂₀Ca
Therefore, the equation is:
³⁸₁₉K –> ³⁸₂₀Ca + ⁰₋₁β
Answer:
669.48 kJ
Explanation:
According to the question, we are required to determine the heat change involved.
We know that, heat change is given by the formula;
Heat change = Mass × change in temperature × Specific heat
In this case;
Change in temperature = Final temp - initial temp
= 99.7°C - 20°C
= 79.7° C
Mass of water is 2000 g ( 2000 mL × 1 g/mL)
Specific heat of water is 4.2 J/g°C
Therefore;
Heat change = 2000 g × 79.7 °C × 4.2 J/g°C
= 669,480 joules
But, 1 kJ = 1000 J
Therefore, heat change is 669.48 kJ
Answer:
i dont think its walking to school because that doesn't use any resources.
Explanation:
i think its driving a car because we use gasoline for that and for sailing we use the wind. hopefully that helps.
Answer:
yes
Explanation:
yes because the ice changes forms physically and can be changed back. not 100% sure tho
Answer:
No matter if you are on Earth, the moon or just chilling in space, your mass does not change. But your weight depends on the gravity force; you would weigh less on the moon than on Earth, and in space you would weigh almost nothing at all.