Answer:
2.067 L ≅ 2.07 L.
Explanation:
- The balanced equation for the mentioned reaction is:
<em>CS₂(g) + 3O₂(g) → CO₂(g) + 2SO₂(g),</em>
It is clear that 1.0 mole of CS₂ react with 3.0 mole of O₂ to produce 1.0 mole of CO₂ and 2.0 moles of SO₂.
- At STP, 3.6 L of H₂ reacts with (?? L) of oxygen gas:
It is known that at STP: every 1.0 mol of any gas occupies 22.4 L.
<u><em>using cross multiplication:</em></u>
1.0 mol of O₂ represents → 22.4 L.
??? mol of O₂ represents → 3.1 L.
∴ 3.1 L of O₂ represents = (1.0 mol)(3.1 L)/(22.4 L) = 0.1384 mol.
- To find the no. of moles of SO₂ produced from 3.1 liters (0.1384 mol) of hydrogen:
<u><em>Using cross multiplication:</em></u>
3.0 mol of O₂ produce → 2.0 mol of SO₂, from stichiometry.
0.1384 mol of O₂ produce → ??? mol of SO₂.
∴ The no. of moles of SO₂ = (2.0 mol)(0.1384 mol)/(3.0 mol) = 0.09227 mol.
- Again, using cross multiplication:
1.0 mol of SO₂ represents → 22.4 L, at STP.
0.09227 mol of SO₂ represents → ??? L.
∴ The no. of liters of SO₂ will be produced = (0.09227 mol)(22.4 L)/(1.0 mol) = 2.067 L ≅ 2.07 L.
I would think it is a heterogeneous mixture since it can't be an element since there are more than one type of atom, it can't be a compound since the leaves are not bonded together, and it can not be a homogeneous mixture since the leaves don't all blended together (the pile is not uniform) and you can distinguish all the different parts of the mixture. It can be considered a heterogeneous mixture since the leaves are mixed together (along with other things like dirt) in a non-uniform way so that you can point out the parts of the mixture and it does not look like one thing.
I hope this helps. Let me know in the comments if anything is unclear.
<h3>
Answer:</h3>
Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g)
<h3>
Explanation:</h3>
Concept tested: Balancing of chemical equations
- A chemical equation is balanced by putting appropriate coefficients on the products and reactants of the equation.
- Balancing chemical equations ensures that chemical equations obey law of conservation of mass.
- In this case; to balance the above equation we put the coefficients, 1, 3, 2, and 3 on the reactants and products.
- Therefore; the balanced chemical equation for the reaction is;
Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g)
Answer:
The second answer choice
Explanation:
X seems to list attributes for opaque objects, and y lists attributes of Transparent objects.