Lajdhskskdhskhdksnsjsndjs
Answer:
The answer is B. A hydrogen atom forms a convalent bond.........
Actually, there are only about 100 atoms that have been yet discovered. But each element has many different kinds of atom. For instance, carbon. Do you know carbon has more than 30 or 50 different types of atoms? Well, how? There are isotopes. Don't think that there is only one carbon atom which has 6 electrons and 6 protons and 6 neutrons. There are more. C-13 has 6 electrons and 6 protons and 7 neutrons. While, C-14 has 6 electrons and 6 protons and 8 neutrons. I just showed you three stable isotopes of carbon(element). But, what is really an isotope?? Did you notice that all of these atoms had the same number of protons and electron but different numbers of neutrons? This is really an isotope. Well, if an atom takes a few more electrons or gives off a few electrons, it still stays the same element/ atom type. Just like that an element can have atoms of different neutron number. It may be less or more. It doesn't affect the atom much: just makes an isotope. But it does affect the atomic mass number or radioactivity of an atom. So, an element can have many different forms of isotopes of its atoms. In this way, being only 100 atoms, there can 1000 atoms or (more than that!).
To make it more clear-
Definition of ISOTOPE: <span>any of two or more forms of a </span>chemical<span> element, having the same number of protons and electrons in the nucleus, or the same atomic number, but having different numbers of neutrons</span>
HOPE YOU UNDERSTOOD THE MATTER:-))
The Ecliptic is an imaginary line on the sky that marks the annual path of the sun. It is the projection of Earths orbit onto the celestial sphere. The ecliptic is even the starting point for the celestial coordinate system used by astronomers to pinpoint the location of every star, nebula, and galaxy.
Answer:
Waterwould be the best choice
Explanation:
<em>The specific heat capacity</em> refers to how much energy is required to raise the temperature of an object. The higher the specific heat capacity, the more energy is required to heat a given substance. This would also mean that w<u>ith a higher specific heat capacity, a substance would be able to retain more heat</u>.
With the above statements in mind, water would be the best choice, because it would retain more heat than the other substances once it reaches 100 °C, and in turn water would emit the most heat while it cools.