Answer:
D) 15s
Explanation:
let Te be the period of the block-spring system on earth and Tm be the period of the same system on the moon.let g1 be the gravitational acceleration on earth and g2 be the gravitational acceleration on the moon.
the period of a pendulum is given by:
T = 2π√(L/g)
so on earth:
Te = 2π√(L/g1)
= 6s
on the moon;
Tm = 2π√(L/g2)
since g2 = 1/6 g1 then:
Tm = 2π√(L/(1/6×g1))
= √(6)×2π√(L/(g1))
and 2π√(L/(g1)) = Te = 6s
Tm = (√(6))×6 = 14.7s ≈ 15s
Therefore, the period of the block-spring system on the moon is 15s.
1) First of all, let's find the resistance of the wire by using Ohm's law:

where V is the potential difference applied on the wire, I the current and R the resistance. For the resistor in the problem we have:

2) Now that we have the value of the resistance, we can find the resistivity of the wire

by using the following relationship:

Where A is the cross-sectional area of the wire and L its length.
We already have its length

, while we need to calculate the area A starting from the radius:

And now we can find the resistivity:
Answer:
240 kPa
Explanation:
The ideal gas law states:

where
p is the gas pressure
V is the gas volume
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
For a fixed amount of gas, n and R are constant, so we can rewrite the equation as

For the gas in the problem, which undergoes a transformation, this can be rewritten as

where we have:
is the initial pressure
is the initial volume
is the initial temperature
is the final pressure
is the final volume
is the final temperature
Solving the formula for p2, we find the final pressure of the gas:

Explanation:
Calculating acceleration is complicated if both speed and direction are changing or if you want to know acceleration at any given instant in time. However, it’s relatively easy to calculate average acceleration over a period of time when only speed is changing. Then acceleration is the change in velocity (represented by Δv) divided by the change in time (represented by Δt):
acceleration=ΔvΔt
No because it is dense and opaque