Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
Both magnitude and DIRECTION
For example,
• 12m East
• -2 miles
•9 meter north
• 8 miles up
Because Florida is wet and humid, while California is dry and non-humid. Florida also contains lots of lakes which evaporate to create thunderstorms.
Answer:
The “terminal speed” of the ball bearing is 5.609 m/s
Explanation:
Radius of the steel ball R = 2.40 mm
Viscosity of honey η = 6.0 Pa/s



While calculating the terminal speed in liquids where density is high the stokes law is used for viscous force and buoyant force is taken into consideration for effective weight of the object. So the expression for terminal speed (Vt)

Substitute the given values to find "terminal speed"




The “terminal speed” of the ball bearing is 5.609 m/s