1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
3 years ago
10

B. Find the centripetal force needed to keep an 60.0 kg rider traveling in a circle in the ride.

Physics
1 answer:
schepotkina [342]3 years ago
8 0

Answer:

loloololo

lol

Explanation:

lolloolololo

You might be interested in
Kalea throws a baseball directly upward at time t = 0 at an initial speed of 13.7 m/s. How high h does the ball rise above its r
Trava [24]

Answer:

h = 9.57 seconds

Explanation:

It is given that,

Initial speed of Kalea, u = 13.7 m/s

At maximum height, v = 0

Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :

v=u-gt

u=gt

t=\dfrac{u}{g}

t=\dfrac{13.7}{9.8}

t = 1.39 s

Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

h=ut+\dfrac{1}{2}at^2

Here, a = -g

h=ut-\dfrac{1}{2}gt^2

h=13.7\times 1.39-\dfrac{1}{2}\times 9.8\times (1.39)^2

h = 9.57 meters

So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.

7 0
3 years ago
Provided following are four different ranges of stellar masses. Rank the stellar mass ranges based on how many stars in each ran
elena-s [515]

Highest to lowest number:

-less than 1 solar mass

-between 1 and 10 solar masses

-between 10 and 30 solar masses

-between 30 and 60 solar masses

<h3>What is Stellar masses ?</h3>

Stellar mass is a phrase that is used by astronomers to describe the mass of a star.

  • It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass ( M ☉). Hence, the bright star Sirius has around 2.02 M ☉.

  • Stellar masses are not fixed, although they change for single stars only on long periods.

Learn more about Stellar masses here:

brainly.com/question/1128503

#SPJ4

3 0
2 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
One end of a metal rod is in contact with a thermal reservoir at 745. K, and the other end is in contact with a thermal reservoi
Masteriza [31]

Answer:

a)S_1=-9.65}\ J/K

b)S_2=71.18\ J/K

c) 0 J/K

d)S= 61.53 J/K

Explanation:

Given that

T₁ = 745 K

T₂ = 101 K

Q= 7190 J

a)

The entropy change of reservoir 745 K

S_1=-\dfrac{7190}{745}\ J/K

Negative sign because heat is leaving.

S_1=-9.65}\ J/K

b)

The entropy change of reservoir 101 K

S_2=\dfrac{7190}{101}\ J/K

S_2=71.18\ J/K

c)

The entropy change of the rod will be zero.

d)

The entropy change of the system

S= S₁ + S₂

S = 71.18 - 9.65 J/K

S= 61.53 J/K

3 0
3 years ago
A(n) 30 kg boy rides a roller coaster. The acceleration of gravity is 9.8 m/s 2 . With what force does he press against the seat
forsale [732]

Answer:

Force, F = 187.42 N

Explanation:

It is given that,

Mass of boy, m = 30 kg

Acceleration due to gravity, a=9.8\ m/s^2

Radius of curvature of the roller coaster, r = 15 m

Speed of the car, v = 7.3 m/s

The force acting on the boy are force of gravity and the centripetal force. The net force acting on him is as follows :

F=mg-\dfrac{mv^2}{r}

F=m(g-\dfrac{v^2}{r})

F=30\times (9.8-\dfrac{(7.3)^2}{15})

F = 187.42 N

So, he press against the seat with a force is 187.42 N. Hence, this is the required solution.

5 0
4 years ago
Other questions:
  • ) determine the density of a 32.5 g metal sample that displaces 8.39 ml of water.
    9·2 answers
  • Select each example of a projectile
    10·2 answers
  • A 50 kg pitcher throws a baseball with a mass of 0.15 kg. If the ball is thrown with a positive velocity of 35 m/s and there is
    7·1 answer
  • 1.An 8-kilogram bowling ball is rolling in a straight line toward you. If its momentum is 16 kg•m/s, how fast is it traveling?
    10·1 answer
  • Which of the following are equivalent unit?
    13·1 answer
  • A skier has an acceleration of 2.5 m/s2. How long does it take her to come to a complete stop from a speed of 18 m/s? A. 3.4 s B
    12·1 answer
  • An orange light (f = 5.2 * 10'4Hz) is
    9·1 answer
  • The ______ and _______ are used to calculate magnitude and direction of a resultant vector.
    7·1 answer
  • A strontium vapor laser beam is reflected from the surface of a CD onto a wall. The brightest spot is the reflected beam at an a
    6·1 answer
  • Is this statement true or false?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!