Answer:
Final temperature is equal to 1291.63°R
Explanation:
given,
p₁ = 100 lb f/in², v₁ = 3.704 ft³/lb, and T₁ = 1000 °R
p₂ = 30 lb f/in² n = 1.4
Δ u = 0.171(T₂ - T₁)
we know for poly tropic process
p vⁿ = constant
p₁ v₁ⁿ = p₂ v₂ⁿ
100 × 3.704¹°⁴ = 30 × v₂¹°⁴
v₂ = 8.753 ft³/lb
work done for poly tropic process
W = 
= 
= 269.525 lbf/in².ft³
W =
Btu/lb
= 49.87 Btu/lb
in the piston cylinder arrangement air is expanding acrobatically
Δ q = Δu + w
Δ u = - w
0.171(T₂ - T₁) = -49.87
0.171(T₁ - T₂) = -49.87
0.171 T₂ = 0.171 × 1000 + 49.87
T₂ = 1291.63 °R
Final temperature is equal to 1291.63°R
Answer:
Explanation:
Height of building
H = 6m
Horizontal speed of first balloon
U1x = 2m/s
Second ballot is thrown straight downward at a speed of
U2y = 2m/s
Time each gallon hits the ground
Balloon 1.
Using equation of free fall
H = Uoy•t + ½gt²
Uox = 0 since the body does not have vertical component of velocity
6 = ½ × 9.8t²
6 = 4.9t²
t² = 6 / 4.9
t² = 1.224
t = √1.224
t = 1.11 seconds
For second balloon
H = Uoy•t + ½gt²
6 = 2t + ½ × 9.8t²
6 = 2t + 4.9t²
4.9t² + 2t —6 = 0
Using formula method to solve the quadratic equation
Check attachment
From the solution we see that,
t = 0.9211 and t = -1.329
We will discard the negative value of time since time can't be negative here
So the second balloon get to the ground after t ≈ 0.92 seconds
Conclusion
The water ballon that was thrown straight down at 2.00 m/s hits the ground first by 1.11 s - 0.92s = 0.19 s.
Answer:
at T = 0ºC the change of state is from the solid state to the gaseous state
Explanation:
In this exercise we are asked about the changes of state, from the data we will assume that the material is water.
Water can exist in three solid states, liquid and gas, in a graph of pressure ℗ against temperature (T) there is a point called triple at T = 0.01ºC, below this point the curve has two states at high pressure solid and low pressure gas.
As a result of the previous ones at T = 0ºC the change of state is from the solid state to the gaseous state
You can see what is the electron configuration by looking at the layout of the periodic tables. the first shell will have a max of 2 electrons on it, once the first one is filled up a second is added with a max of 8 electrons on it and so on with the 8 as a max. so He, and H will only have them on the first shell but every horizontal row is a new valence or outer shell. so lets say for carbon look at the number in the upper left corner of the box will tell you the total number of electrons you will need. so start off with the first two electrons on the first shell. now you know that carbon needs 6 electrons in total, since you can only have a max of 2 on the first shell you need a second one so on the second one you will have to have the remaining 4. now elements are most stable when they have a full valence shell becuase those are the only electrons that will react with others. so if carbon has 4 it wants to either gain or lose 4 electrons so you could say that it would bond with 4H since each H will donate 1 electron to the C valence shell making all the H and C stable. CH4(methane)
The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be quickly changed by controlling the amount of electric current in the winding. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field.