1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
4 years ago
13

What is displacement?

Physics
1 answer:
LUCKY_DIMON [66]4 years ago
3 0

In Physics, displacement is the distance and direction of the shortest path
from the starting point to the ending point, regardless of the path followed
to get there.


You might be interested in
To construct a solenoid, you wrap insulated wire uniformly around a plastic tube 7.1 cm in diameter and 57 cm in length. You wou
ASHA 777 [7]

Answer:

We need about 8769 meters of wire to produce a 2.6 kilogauss magnetic field.

Explanation:

Recall the formula for the magnetic field produced by a solenoid of length L. N turns, and running a current I:

B=\mu_0\,\frac{N}{L} \,I

So, in our case, where B = 2.6 KG = 0.26 Tesla; I is 3 amperes, and L = 0.57 m, we can find what is the number of turns needed;

B=\mu_0\,\frac{N}{L} \,I\\0.26=4\,\pi\,10^{-7}\frac{N}{0.57} \,3\\N=\frac{0.26*0.57\,10^7}{12\,\pi} \\N=39311.27

Therefore we need about 39312 turns of wire. Considering that each turn must have a length of \pi\,D, where D is the diameter of the plastic cylindrical tube, then the total length of the wire must be:

Length=39312\,(\pi\,D)=39312\,(\pi\,0.071)\approx 8768.66\,\,m

We can round it to about 8769 meters.

5 0
3 years ago
Find the shear stress and the thickness of the boundary layer (a) at the center and (b) at the trailing edge of a smooth flat pl
melomori [17]

Answer:

a) The shear stress is 0.012

b) The shear stress is 0.0082

c) The total friction drag is 0.329 lbf

Explanation:

Given by the problem:

Length y plate = 2 ft

Width y plate = 10 ft

p = density = 1.938 slug/ft³

v = kinematic viscosity = 1.217x10⁻⁵ft²/s

Absolute viscosity = 2.359x10⁻⁵lbfs/ft²

a) The Reynold number is equal to:

Re=\frac{1*3}{1.217x10^{-5} } =246507, laminar

The boundary layer thickness is equal to:

\delta=\frac{4.91*1}{Re^{0.5} }  =\frac{4.91*1}{246507^{0.5} } =0.0098 ft

The shear stress is equal to:

\tau=0.332(\frac{2.359x10^{-5}*3 }{1}  )(246507)^{0.5} =0.012

b) If the railing edge is 2 ft, the Reynold number is:

Re=\frac{2*3}{1.215x10^{-5} } =493015.6,laminar

The boundary layer is equal to:

\delta=\frac{4.91*2}{493015.6^{0.5} } =0.000019ft

The sear stress is equal to:

\tau=0.332(\frac{2.359x10^{-5}*3 }{2}  )(493015.6^{0.5} )=0.0082

c) The drag coefficient is equal to:

C=\frac{1.328}{\sqrt{Re} } =\frac{1.328}{\sqrt{493015.6} } ==0.0019

The friction drag is equal to:

F=Cp\frac{v^{2} }{2} wL=0.0019*1.938*(\frac{3^{2} }{2} )(10*2)=0.329lbf

7 0
3 years ago
If Dwight races his Chevy towards Chatham and travels 2460 meters in 60 seconds. what is his velocity?
labwork [276]

Answer:

divide

Explanation:

whenever looking for velocity.just devide

8 0
3 years ago
A soccer ball is kicked and left
Vedmedyk [2.9K]

Answer:

Explanation:

Considering that this is parabolic motion, we know that the time the ball is in the air begins the instant it leaves the ground, reaches up to its max height, and then begins falling until it reaches the ground. Duh, right? Some important things happen during this trip. There are a few things we need to know in order to even begin the problem. Parabolic motion has x and y coordinates because it is 2-dimmensional; the acceleration in the x dimension is not the same as the acceleration in the y dimension; the velocity of an object at its max height is always 0; the time it takes to reach its max height (where the max height is half the distance the object travels) is half the time it takes to make the whole trip. Yikes. That's a lot to know and much to remember! Don't you just LOVE physics!?

For a. the hang time is the time the ball was in the air. Some of that stuff we talked about above is pertinent to solving this problem. We know that the velocity of the ball is 0 at its max height, and we also know that if we find the time it takes to reach its max height, we can double that number to find how long it was in the air for the whole trip. Use the one-dimensional equation

v=v_0+at to find out how long it took to reach the max height. Even though we don't yet know the max height, we DO know that the velocity at that point is 0. BUT before we do that, since we are working in the y-dimension only, it would behoove us (benefit us) to find the velocity particular to this dimension. We are going to answer c. first, then backtrack.

c. wants the initial vertical velocity. That is found in the magnitude of the "blanket" or generic velocity times the sin of the angle, namely:

V_y=25sin(45) so

V_y= 18 m/s Now we can use that as the initial upwards velocity in part a:

v=v_0+at and filling in:

0 = 18 + (-9.8)t and

-18 = -9.8t so

t = 1.8 seconds. But remember, this is only half the time it was in the air. The whole trip, then, takes 2(1.8) which is

t = 3.6 seconds

That's a and c. Now for b:

b. asks for the x component of the velocity:

V_x=Vcos\theta which works out to be the same as the vertical velocity, since the sin and cos of 45 degrees is the same:

V_x=25cos45 and

V_x= 18 m/s

Onto d:

d. wants the max height. Remember, it took 1.8 seconds to get to the max height, so using yet another one-dimensional equation:

Δx = v₀t + \frac{1}{2}at^2 where Δx is the displacement, v₀ is the initial upwards velocity, a is the pull of gravity, and t is the time it takes to reach that max height (Δx, our unknown). Filling in:

Δx = 18(1.8)+\frac{1}{2}(-9.8)(1.8)^2 and if you do the rounding correctly, you'll end up with this:

Δx = 32 - 16 so

the max height, Δx, is 16 meters.

e. wants the range. That translates to the distance the ball traveled. This is found in a glorified version of d = rt, where d is displacement, r is velocity, and t is...well, time (that doesn't change):

Δx = vt so

Δx = 18(3.6) remember that the ball was in the air for a total of 3.6 seconds, so

Δx = 65 meters.

Phew!!!!! That's a lot! I suggest you learn your physics or this will make you insane by the end of the course!

6 0
3 years ago
The speed of a wave is 65 m/sec. if the wavelength os the wave is 0.8 meters. what is the spedd of this wave?
san4es73 [151]
The time of a wave is 65 m/sec. if the wavelength of the wave is 0.8 meters. what is the speed of this wave?

answer- the speed is 52
7 0
3 years ago
Other questions:
  • An underwater diver sees the sun 50° above horizontal. how high is the sun above the horizon to a fisherman in a boat above the
    11·1 answer
  • A large truck is moving at 22.0 m/s. If its momentum is 125,000 kg • , what is the truck's mass?
    12·2 answers
  • 1. A 100-kg crate is pulled across a warehouse floor using a rope with a force of 250 N at an angle of 45o from the horizontal.
    12·1 answer
  • You pull with a force of 77 N on a piece of luggage of mass 23 kg, but it does
    12·2 answers
  • When you ride a bike and make a turn, you can feel your body trying to
    8·1 answer
  • A space vehicle accelerates uniformly from 85 m/s at t = 0 to 164 m/s at t = 10.0 s .How far did it move between t = 2.0 s and t
    5·2 answers
  • In the equation vx^2=v0x^2+2ax(x-x0) what does the terms vx, v0x, x, and x0 stand for respectively?
    5·2 answers
  • A long distance runner running a 5.0km track is pacing himself by running 4.5km at 9.0km/h and the rest at 12.5km/h. What is his
    5·1 answer
  • Write down the atomic numbers of nitrogen and sodium ?​
    9·2 answers
  • A major league baseball has a mass of 0.145 kg.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!