1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
3 years ago
9

How is the density of a substance calculated?

Physics
1 answer:
den301095 [7]3 years ago
3 0
1).  Take a sample of the substance.  The sample should be the largest
possible that will allow it to be be easily handled and the following steps
to be performed with it. 
(The density doesn't depend on the size of the sample, and every sample
of the same substance has the same density.  But using a larger sample
can improve the accuracy of the measurements you make, and therefore
improve the accuracy of the density you derive for the substance.)

2). Ask or measure the mass of the sample.

3). Ask or measure the volume of the sample.

4). Divide the mass by the volume. Their quotient is the density
of the substance.
You might be interested in
In case A below, a 1 kg solid sphere is released from rest at point S. It rolls without slipping down the ramp shown, and is lau
mestny [16]

Answer:

the block reaches higher than the sphere

\frac{y_{sphere}} {y_block} = 5/7

Explanation:

We are going to solve this interesting problem

A) in this case a sphere rolls on the ramp, let's find the speed of the center of mass at the exit of the ramp

Let's use the concept of conservation of energy

starting point. At the top of the ramp

         Em₀ = U = m g y₁

final point. At the exit of the ramp

         Em_f = K + U = ½ m v² + ½ I w² + m g y₂

notice that we include the translational and rotational energy, we assume that the height of the exit ramp is y₂

energy is conserved

          Em₀ = Em_f

         m g y₁ = ½ m v² + ½ I w² + m g y₂

angular and linear velocity are related

        v = w r

the moment of inertia of a sphere is

         I = \frac{2}{5} m r²

we substitute

         m g (y₁ - y₂) = ½ m v² + ½ (\frac{2}{5} m r²) (\frac{v}{r})²

         m g h = ½ m v² (1 + \frac{2}{5})

where h is the difference in height between the two sides of the ramp

h = y₂ -y₁

         mg h = \frac{7}{5} (\frac{1}{2} m v²)

         v = √5/7  √2gh

This is the exit velocity of the vertical movement of the sphere

         v_sphere = 0.845 √2gh

B) is the same case, but for a box without friction

   starting point

          Em₀ = U = mg y₁

   final point

          Em_f = K + U = ½ m v² + m g y₂

          Em₀ = Em_f

          mg y₁ = ½ m v² + m g y₂

          m g (y₁ -y₂) = ½ m v²

          v = √2gh

this is the speed of the box

          v_box = √2gh

to know which body reaches higher in the air we can use the kinematic relations

          v² = v₀² - 2 g y

at the highest point v = 0

           y = vo₀²/ 2g

for the sphere

           y_sphere = 5/7 2gh / 2g

           y_esfera = 5/7 h

for the block

           y_block = 2gh / 2g

            y_block = h

       

therefore the block reaches higher than the sphere

         \frac{y_{sphere}} {y_bolck} = 5/7

3 0
3 years ago
What is the equivalent resistance of a circuit that contains four 75.02
viktelen [127]

Answer:

option A is the correct answer

3 0
2 years ago
How can you prove that air contains carbon dioxide?​
pickupchik [31]

Answer:

Limewater can be used to detect carbon dioxide. If carbon dioxide is bubbled through limewater then it turns from clear to cloudy/milky in colour. This is why limewater used in a simple respirometer can show that more carbon dioxide is present in exhaled air compared to inhaled air.

Explanation:

4 0
3 years ago
Read 2 more answers
5. A person fishing from a pier observes that four wave crests pass by in 7.0 s and estimates that the distance between two succ
TiliK225 [7]

Answer:

v= 1.71 m/s

Explanation:

Given that

Distance between two successive crests = 4.0 m

 λ = 4 m

T= 7 sec

T is the time between 3 waves.

3 waves = 7 sec

1 wave = 7 /3 sec

So t= 7/3 s

We know that frequency f

f= 1/t= 3/7 Hz

Lets take speed of the wave is v

v= f λ

f=frequency

λ=wavelength

v= 3/7 x 4 = 12 /7

v= 1.71 m/s

3 0
3 years ago
The two masses in the Atwood's machine shown in the figure are initially at rest at the same height. After they are released, th
Inga [223]

According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.

To solve this problem we must apply the concept related to the conservation of energy theorem.

PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so

E_i = E_f

0 = \frac{1}{2} (m_1+m_2)v_f^2-m_2gh+m_1gh

v_f = \sqrt{2gh(\frac{m_2-m_1}{m_1+m_2})}

PART B) Replacing the values given as,

h= 1.7m\\m_1 = 3.5kg\\m_2 = 4.3kg \\g = 9.8m/s^2 \\

v_f = \sqrt{2gh(\frac{m_2-m_1}{m_1+m_2})}

v_f = \sqrt{2(9.8)(1.7)(\frac{4.3-3.5}{3.5+4.3})}

v_f = 1.8486m/s

Therefore the speed of the masses would be 1.8486m/s

6 0
4 years ago
Other questions:
  • Scientific theories cannot change once they've been written down true or false ​
    15·2 answers
  • While trying out for the position of pitcher on your high school baseball team, you throw a fastball at 87.6 mi/h toward home pl
    10·1 answer
  • When we look at a blue recycle bin, we see blue because...
    5·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS!!
    6·2 answers
  • (Please help ASAP) A new planet MPSM, Mystery Planet of Spartan Men, is discovered following the orbital path of the Mystery Pla
    12·1 answer
  • Based on how this sample looks, which term describes the matter that makes up granite?
    11·2 answers
  • 14 kilometers per hour to meters per second
    14·1 answer
  • The ball is displaced to the left and then oscillates backwards and forwards between the two plates. The ball touches a plate on
    8·1 answer
  • how can changing the kinetic energy of an object cause energy to be transferred to or from the object
    9·1 answer
  • A baseball is thrown at an angle of 22◦ relative to the ground at a speed of 24.8 m/s. The ball is caught 43.5518 m from the thr
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!