1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
3 years ago
7

What happens to the temperature of a gas when it is compressed? a the temperature does not change. b the temperature increases.

c the temperature becomes unpredictable. d the temperature decreases?
Physics
2 answers:
kupik [55]3 years ago
8 0

Answer:

<h2>Increases.</h2>

Explanation:

Because the volume is reduced, particles are accelerated and that increases the temperature, due to the energy inside the system.

nasty-shy [4]3 years ago
5 0
I think the temperature increases
You might be interested in
Question 1<br> 2.5 cm=<br> mm
Nookie1986 [14]
There’s 10mm in a cm: 22mm
8 0
3 years ago
Read 2 more answers
HELP ME DO THIS QUESTION PLEASE ​
raketka [301]

Answer:

i dont know

Explanation:

but what you can do is ask you mom or dad to get you a tutor to help you

7 0
3 years ago
Standing at a crosswalk, you hear a frequency of 550 Hz from the siren of an approaching ambulance. After the ambulance passes,
FromTheMoon [43]

There are six steps to this process , I uploaded step one and as you can see you can get all six on Quizlet:). Good luck

6 0
3 years ago
A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of 11.2 rad/s in 3.07 s. (a) f
Hitman42 [59]
(a) The angular acceleration of the wheel is given by
\alpha =  \frac{\omega_f - \omega_i }{t}
where \omega_i and \omega_f are the initial and final angular speed of the wheel, and t the time.

In our problem, the initial angular speed is zero (the wheel starts from rest), so the angular acceleration is
\alpha =  \frac{(11.2 rad/s) - 0}{3.07 s} =3.65 rad/s^2

(b) The wheel is moving by uniformly rotational accelerated motion, so the angle it covered after a time t is given by
\theta (t) = \omega_i t +  \frac{1}{2} \alpha t^2
where \omega_i = 0 is the initial angular speed. So, the angle covered after a time t=3.07 s is
\theta=  \frac{1}{2}  \alpha t^2 =  \frac{1}{2}(3.65 rad/s^2)(3.07 s)^2 = 17.2 rad
6 0
2 years ago
Tim and Rick both can run at speed Vr and walk at speed Vw, with Vr &gt; Vw.
miss Akunina [59]

Answer:

Δt =  \frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw}

Explanation:

Hi there!

Using the equation of speed for the whole trip, we can obtain the time each one needed to cover the distance D.

The speed (v) is calculated by dividing the traveled distance (d) over the time needed to cover that distance (t):

v = d/t

Rick traveled half of the distance at Vr and the other half at Vw. Then, when v = Vr, the distance traveled was D/2 and the time is unknown, Δt1:

Vr = D/ (2 · Δt1)

For the other half of the trip the expression of velocity will be:

Vw = D/(2 · Δt2)

The total time traveled is the sum of both Δt:

Δt(total) = Δt1 + Δt2

Then, solving the first equation for Δt1:

Vr = D/ (2 · Δt1)

Δt1 = D/(2 · Vr)

In the same way for the second equation:

Δt2 = D/(2 · Vw)

Δt + Δt2 = D/(2 · Vr) + D/(2 · Vw)

Δt(total) = D/2 · (1/Vr + 1/Vw)

The time needed by Rick to complete the trip was:

Δt(total) = D/2 · (1/Vr + 1/Vw)

Now let´s calculate the time it took Tim to do the trip:

Tim walks half of the time, then his speed could be expressed as follows:

Vw = 2d1/Δt  Where d1 is the traveled distance.

Solving for d1:

Vw · Δt/2 = d1

He then ran half of the time:

Vr = 2d2/Δt

Solving for d2:

Vr · Δt/2 = d2

Since d1 + d2 = D, then:

Vw · Δt/2 +  Vr · Δt/2 = D

Solving for Δt:

Δt (Vw/2 + Vr/2) = D

Δt = D / (Vw/2 + Vr/2)

Δt = D/ ((Vw + Vr)/2)

Δt = 2D / (Vw + Vr)

The time needed by Tim to complete the trip was:

Δt = 2D / (Vw + Vr)

Let´s find the diference between the time done by Tim and the one done by Rick:

Δt(tim) - Δt(rick)

2D / (Vw + Vr) - (D/2 · (1/Vr + 1/Vw))

\frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw} = Δt

Let´s check the result. If Vr = Vw:

Δt = 2D/2Vr - D/2Vr - D/2Vr

Δt = D/Vr - D/Vr = 0

This makes sense because if both move with the same velocity all the time both will do the trip in the same time.

8 0
3 years ago
Other questions:
  • imagine that a tank is filled with water the hight of the liquid column is 7 meters and the area is 1.5 sq meters (m™). what's t
    14·1 answer
  • English units of distance include the
    14·1 answer
  • Which are the components of a typical refracting telescope? hints?
    12·1 answer
  • What terms describes an atom's tendency to hold onto electrons
    5·2 answers
  • A ball is dropped off a roof. The ball falls for 4 seconds. Just before the ball hits the ground what is its velocity?
    13·1 answer
  • an always be used to calculate the electric field. relates the electric field at points on a closed surface to the net charge en
    6·1 answer
  • The most pressing problem in the Chesapeake Bay is
    6·2 answers
  • Someone help me please
    7·1 answer
  • If The density of this stainless steel is7.85 g/cm3,specific heatis 0.5 J/g.K, melting pointis 1673K, heat of fusion s0.260J/kg.
    9·1 answer
  • what happens to the average molecular speed in an ideal gas if you triple the volume and keep the same temperature ?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!