Answer:
Option A
Explanation:
Leguminous plants like pulses etc. have root nodules comprising of rhizobacterium which live in a symbiotic relationship with the roots of the plant and in turn fix the nitrogen in the soil in the roots of the leguminous plants.
Hence, option A is correct
<u>Answer:</u> The
of the reaction at given temperature is -12.964 kJ/mol.
<u>Explanation:</u>
For the given chemical reaction:

The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 0 J (at equilibrium)
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 
Putting values in above equation, we get:

Hence, the
of the reaction at given temperature is -12.964 kJ/mol.
Answer:
BF3
Explanation:
For this question, you need to use the number of valence electrons present in each element. Boron is in group 3/13 on the periodic table so you know it has 3 valence electrons while Fluorine is in group 7/17 so it has 7 valence electrons. These elements are both covalent so they will share electrons. All elements in the first three rows want to reach either have 8 valence electrons or zero valence electrons depending on whichever is easier. When B and F interact each Fluorine will only want to take one electron, but Boron wants to get rid of all 3 electrons, so it will bond with 3 Fluorine to get rid of all its valence electrons.
I hope this helps.
Answer: The main difference between oxide and oxygen is that oxide is a chemical compound with at least one oxygen atom while oxygen is an element whose atomic number is 8.
Explanation: let me know if it was right or wrong