Answer:
The majority of chemical processes are reactions that occur in solution. Important industrial processes often utilize solution chemistry. "Life" is the sum of a series of complex processes occurring in solution. Air, tap water, tincture of iodine, beverages, and household ammonia are common examples of solutions.
four types of solution:
Turpentine as a solvent are used in the production of paints, inks and dyes. ↔Water as a solvent is used in the making of food, textiles, soaps and detergents. ↔Alloys are solid solutions that are used in the manufacture of cars, aerospace and other vehicles.
Explanation:
can you pls make me brainliest
Answer:
Conduction
Explanation:
The heat can be transferred in the substances in three ways: conduction, convection, and radiation.
The conduction happens inside the material, usually a solid, and the heat flows as the molecules of the substance are agitated. The convection happens when there are different substances in touch, so it is the heat passage from a solid to a liquid or gas, from a gas to a liquid or vice versa. The radiation occurs between substances that are far away and the heat flows by electromagnetic waves.
Thus, in the wire, the heat flows by conduction.
Answer:
The answer to your question is ΔH° rxn = -1343.9 kJ/mol
Explanation:
P₄O₆ (s) + 2 O₂ (g) ⇒ P₄O₁₀
ΔH°rxn = ?
Formula
ΔH°rxn = ∑H° products - ∑H° reactants
H° P₄O₆ = -1640.1 kJ/mol
H° O₂ = 0 kJ/mol
H° P₄O₁₀ = -2984 kJ/mol
-Substitution
ΔH° rxn = (-2984) - (-1640.1) - (0)
-Simplification
ΔH° rxn = -2984 + 1640.1
ΔH° rxn = -1343.9 kJ/mol
The right answer for the question that is being asked and shown above is that: "(2) the cathode in a voltaic cell and the anode in an electrolytic cell." At the status of electrode does oxidation occur in a voltaic cell and in an electrolytic cell is that the cathode in a voltaic cell and the anode in <span>an electrolytic cell</span>
U would subtract 90 minus 45 which equals 45