Answer:
An object has potential energy (stored energy) when it is not in motion. Once a force has been applied or it begins to move the potential energy changes to kinetic energy (energy of motion).
Therefore, true. (Also would u mind giving brainliest, you don't have to hehe)
The best way to separate out a precipitate is using vacuum filtration. Use water to rinse out the flask thoroughly and wash the precipitate, followed by a quick rinse with ethanol to help dry it. After a few minutes on the vacuum pump, the precipitate should be ready to scrape off.<span> Also, centrifugation can be an option for small amounts especially if you just need the filtrate. For reasonable amounts, a Millipore setup or Gooch type crucible works nicely for quantitative analysis.</span>
Answer:
The ideal gas equation
Explanation:
The ideal gas equation is derived from the combination of three gas laws:
- Boyle's law
- Charles's law
- Avogadro's law.
The ideal gas law is expressed mathematically as: PV=nRT where:
P is pressure
V is volume
n is the number of moles
R is the ideal gas law
T is temperature.
To obtain the combined gas law, we assume that n=1 and this gives:
= R
Therefore:
= 
Answer:
La presión que ejerce es 42 atm.
Explanation:
La ley de Boyle relaciona la presión y el volumen y dice que el volumen ocupado por una determinada masa gaseosa a temperatura constante, es inversamente proporcional a la presión.
La ley de Boyle se expresa matemáticamente como:
P*V=k
Ahora es posible suponer que tienes un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si varias el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:
P1*V1= P2*V2
En este caso:
- P1= 3 atm
- V1= 7 L
- P2= ?
- V2= 0.5 L
Reemplazando:
3 atm* 7 L= P2* 0.5 L
Resolviendo:

P2= 42 atm
<u><em>La presión que ejerce es 42 atm.</em></u>
Answer:
Whether barium chloride solution was pure
Explanation:
We may answer whether barium chloride was pure. The sequence of this experiment might be depicted by the following balanced chemical equations:


Having a total sample of 10.0 grams, we would firstly find the mass percentage of barium in barium chloride:

This means in 10.0 g, we have a total of:
of barium cations.
The precipitate is then formed and we measure its mass. Having its mass determined, we'll firstly find the percentage of barium in barium sulfate using the same approach:

Multiplying the mass we obtained by the fraction of barium will yield mass of barium in barium sulfate. Then:
- if this number is equal to 6.595 g, we have a pure sample of barium chloride;
- if this number is lower than 6.595 g, this means we have an impure sample of barium chloride, as we were only able to precipitate a fraction of 6.595 g.