B)Buenos Aires was the city near the epicenter :)
The balanced molecular chemical equation for the reaction will be expressed as Cs₂CO₃ + Mg(NO₃)₂ -> 2CsNO₃ + MgCO₃
- For any chemical equation to be balanced, the number of moles of elements in the reactants must be equal to that of the product.
- According to the question, we are to write a balanced equation for the reaction in aqueous solution for cesium carbonate and magnesium nitrate
- The chemical formula for Cesium carbonate is Cs₂CO₃
- The chemical formula for magnesium nitrate is Mg(NO₃)₂
Hence the balanced molecular chemical equation for the reaction will be expressed as Cs₂CO₃ + Mg(NO₃)₂ -> 2CsNO₃ + MgCO₃
Learn more here: brainly.com/question/11904811
Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹
Answer:
hydrogen ions
Explanation:
because acid is the specie that have ability to donate proton or forming bond with electron pair