Answer:
Explanation:
Not Many
1 mol of CO has a mass of
C = 12
O = 16
1 mol = 28 grams.
1 mol of molecules = 6.02 * 10^23
x mol of molecules = 3.14 * 10^15 Cross multiply
6.02*10^23 x = 1 * 3.14 * 10^15 Divide by 6.02*10^23
x = 3.14*10^15 / 6.02*10^23
x = 0.000000005 mols
x = 5*10^-9
1 mol of CO has a mass of 28
5*10^-9 mol of CO has a mass of x Cross Multiply
x = 5 * 10^-9 * 28
x = 1.46 * 10^-7 grams
Answer: there are 1.46 * 10-7 grams of CO if only 3.14 * 10^15 molecules are in the sample
Answer:
1.Most metal oxides are insoluble in water but some of these (e.g. Na2O.
Explanation:
2.: (i) A hissing sound is observed.
1.ii) The mixture starts boiling and lime water is obtained.
Answer:
1 : 2
Explanation:
From the question given, we obtained the following information:
T1 = 287°C = 287 +273 = 560K
T1 = 587°C = 587 +273 =860K
V1 = V
V2 =?
V1 /T1 = V2 /T2
V/560 = V2/860
Cross multiply
V2 x 560 = 860 x V
Divide both side by 560
V2 = (860 x V) / 560
V2 = 1.54V = 2V
The ratio of initial to final volume =
V1 : V2
= V : 2V
= 1 : 2
The density of mercury is 13.6g/lmL. The volume of a 200 gram sample of mercury will be :
Volume=
200g/13.6g/mL
Volume=14.7mL
Therefore the correct option will be E
Answer: The pressure will be equal to 0.19 atm.
Explanation:
The Ideal Gas Equation states the relationship among the pressure, temperature, volume, and number of moles of a gas.
The equation is:

where P = pressure in <em>atm</em>
V = volume in <em>L</em>
n = numbers of moles of gas in <em>mol</em>
R = universal gas constant = 0.08206 
T = temperature in <em>K</em>
Based on the problem,
mass of O2 = 1.0 g
V = 4.00 L
T = 293 K
mol of O2 = ?
P = ?
We need to calculate the moles of O2 before we can use the Ideal Gas Equation. To solve the number of moles, we use the equation:

The molar mass of O2 is 32 g/mol, therefore,

no. of moles of O2 = 0.03125 mol.
Now we substitute the values into the Ideal Gas equation:

Solving for P, we will get

In correct significant figures, P is equal to 0.19 atm.