To evaluate the accuracy of a measurement, the measured value must be compared to the correct value. To evaluate the precision of a measurement, you must compare the values of two or more repeated measurements.
These animals are all invertebrates
Answer:
Ethyn(g) + 5oxygen(g) ------------> 4carbondioxide(g) + 2water(l)
Answer:
r = 3.61x M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :
x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:
y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :
k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r =
r = 3.61x M/s
Answer:
It takes 1,068.76 grams of nitrogen to fill an 855 L tank at STP.
Explanation:
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C or 273.15 °K are used and are reference values for gases.
On the other side, the pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:
P*V = n*R*T
where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas.
So, in this case:
- P= 1 atm
- V= 855 L
- n= ?
- R= 0.082
- T= 273.15 K
Replacing:
1 atm* 855 L= n* 0.082 * 273.15 K
Solving:
n= 38.17 moles
Being the molar mass of nitrogen N2 equal to 28 g / mol, you can apply the following rule of three: if there are 28 grams in 1 mole, how much mass is there in 38.17 moles?
mass= 1,068.76 grams
<u><em>
It takes 1,068.76 grams of nitrogen to fill an 855 L tank at STP.</em></u>