Answer:
A penny dissolves in hydrochloric acid if the copper coating is filed down in several spot... ... When The Zinc In A Certain Penny Dissolves, The Total Volume Of Gas ... is filed down in several spots (so that the hydrochloric acid can reach the zinc). The reaction between the acid and the zinc 2H+(aq)+Zn(s)→H2(g)+Zn2+(aq) .
A reaction mechanism must ultimately be understood as a "blow-by-blow" description of the molecular-level events whose sequence leads from reactants to products. These elementary steps (also called elementary reactions) are almost always very simple ones involving one, two, or [rarely] three chemical species which are classified
It is common knowledge that chemical reactions occur more rapidly at higher temperatures. Everyone knows that milk turns sour much more rapidly if stored at room temperature rather than in a refrigerator, butter goes rancid more quickly in the summer than in the winter, and eggs hard-boil more quickly at sea level than in the mountains. For the same reason, cold-blooded animals such as reptiles and insects tend to be noticeably more lethargic on cold days.
Thermal energy relates direction to motion at the molecular level. As the temperature rises, molecules move faster and collide more vigorously, greatly increasing the likelihood of bond cleavages and rearrangements as described above.
Answer:
Water ______________________________________________
Answer:
The correct answer is: Ka= 5.0 x 10⁻⁶
Explanation:
The ionization of a weak monoprotic acid HA is given by the following equilibrium: HA ⇄ H⁺ + A⁻. At the beginning (t= 0) we have 0.200 M of HA. Then, a certain amount (x) is dissociated into H⁺ and A⁻, as is detailed in the following table:
HA ⇄ H⁺ + A⁻
t= 0 0.200 M 0 0
t -x x x
t= eq 0.200M -x x x
At equilibrium, we have the following ionization constant expression (Ka):
Ka= ![\frac{ [H^{+}] [A^{-} ]}{ [HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BH%5E%7B%2B%7D%5D%20%20%5BA%5E%7B-%7D%20%5D%7D%7B%20%5BHA%5D%7D)
Ka= 
Ka= 
From the definition of pH, we know that:
pH= - log [H⁺]
In this case, [H⁺]= x, so:
pH= -log x
3.0= -log x
⇒x = 10⁻³
We introduce the value of x (10⁻³) in the previous expression and then we can calculate the ionization constant Ka as follows:
Ka=
=
= 5.025 x 10⁻⁶= 5.0 x 10⁻⁶