idksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu jidksbabgdsamh vjd,hba sh,gdk,h agshcg dhbmbkdgh ,mhfcdgs m,hdfgs kjhab ckjmhasb mhfcg asd,gbcfjkde qwhsfjasdhnf bkhjsadhgc kbasdhkfkiu ae jhbdkghaw gds hgu j
Answer:
Explanation:
We shall consider direction towards left as positive Let the required velocity be v and let v makes an angle φ
Applying law of conservation of momentum along direction of original motion
m₁ v₁ - m₂ v₂ = m₂v₃ - m₁ v₄
0.132 x 1.25 - .143 x 1.14 = 1.03 cos43 x .143 - v cos θ
v cos θ = .8
Applying law of conservation of momentum along direction perpendicular to direction of original motion
1.03 sin 43 x .143 = .132 x v sinθ
v sinθ = .76
squaring and adding
v² = .76 ² + .8²
v = 1.1 m /s
Tan θ = .76 / .8
θ = 44°