Answer:
A substance with low ability or no ability to conduct energy.
Such as Rubber,Silicone,Plastic
Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Answer:
(C). The line integral of the magnetic field around a closed loop
Explanation:
Faraday's law states that induced emf is directly proportional to the time rate of change of magnetic flux.
This can be written mathematically as;

is the rate of change of the magnetic flux through a surface bounded by the loop.
ΔФ = BA
where;
ΔФ is change in flux
B is the magnetic field
A is the area of the loop
Thus, according to Faraday's law of electric generators
∫BdL =
= EMF
Therefore, the line integral of the magnetic field around a closed loop is equal to the negative of the rate of change of the magnetic flux through the area enclosed by the loop.
The correct option is "C"
(C). The line integral of the magnetic field around a closed loop
The final temperature of the tea cup is 100°C.
<h3>What is internal energy?</h3>
The Internal energy is the energy of a substance due to to the constant random motion of its particles.
The symbol for internal energy of a substance is U and it is measured in Joules.
ΔU = q + W
- W is the mechanical work.
In conclusion, the final temperature of the tea cup at room temperature of 24 °C which is heated until it has twice the internal energy is 100°C.
Learn more about internal energy at: brainly.com/question/24028630
#SPJ1
Answer:
a) Explanation below. b) Explanation below
Explanation:
Torque is defined as the product of a force by a radius, while momentum is defined as the product of force by a distance. Mathematically we would have
T = F * r
M = F * d
where:
T = torque = [N*m]
M = moment = [N*m]
F = force =[N]
d = distance [m]
r = radius [m]
Although they have the same units, the difference between them is the application. For the case of torque this is always applied in parts that are in rotation, such as the shafts of cars, the shafts of pumps, torque in gears and etc. While the moment can be applied to a body without the need for it to rotate.
A couple, is as its name suggests a couple of forces of equal magnitude but opposite sense and do not share a line of action. A body under the action of a couple of forces tends to rotate the body without moving it from one point to another.