Answer:
its 1/2 the mass of the object times by its velocity ^ 2
Answer: 0.067 s
Explanation:s = Ut + 1/2at^2
0.6 = 9t + 0.5 *10 *t^2
Where a = g =10m/s/s
Solving the quadratic equation
5t^2 + 9t - 0.6=0,
t= 0.067 s and - 1.7 s
Of which 0.067 s is a valid time
Answer: Wavelength is related to light and also related to energy. The shorter the wavelengths and the higher the frequency corresponds with greater energy. So the longer the wavelengths and lower the frequency results in lower energy. The energy equation is E = hν.
Answer:
because each row increases in atomic mass by a specific number, so anything over five is in the second row.
Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd