Answer:
350.72 m/s
Explanation:
Formula for velocity of wave is;
v = fλ
Where;
v is speed
f is frequency
λ is wavelength
We are given;
f = 512 Hz
λ = 0.685 m
Thus;
v = 512 × 0.685
v = 350.72 m/s
<span>This is known as a "solar eclipse." The Moon partially or completely covers the Sun, leading to a rapidly moving shadow across the sunlit face of the Earth.</span>
Answer:
2) f = 0.707 Hz
Explanation:
Given m₁ = 1.0 kg , f₁ = 1.0 Hz
So using the equation
f₁ = ( 1 / 2 π ) * √K / m₁
Solve to determine K' constant of spring
K = m * ( 4 π ² * f ² )
K = 1.0 kg * ( 4 π ² 1.0² Hz )
K = 39.4784176
So given 2.0 kg the frequency can be find using formula
f₂ = ( 1 / 2 π ) * √K / m₂
f₂ = ( 1 / 2 π ) * √39.4784176 / 2.0 kg
f₂ = 0.707 Hz
Answer:
2.726472 s more or 1.5874 times more time is taken than 10-lb roast.
Explanation:
Given:
- The cooking time t is related the mass of food m by:
t = m^(2/3)
- Mass of roast 1 m_1 = 20 lb
- Mass of roast 2 m_2 = 10 lb
Find:
how much longer does a 20-lb roast take than a 10-lb roast?
Solution:
- Compute the times for individual roasts using the given relation:
t_1 = (20)^(2/3) = 7.36806 s
t_2 = (10)^(2/3) = 4.641588 s
- Now take a ration of t_1 to t_2, to see how many times more time is taken by massive roast:
t_1 / t_2 = (20 / 10)^(2/3)
- Compute: t_1 / t_2 = 2^(2/3) = 1.5874 s
- Hence, a 20-lb roast takes 1.5874 times more seconds than 10- lb roast.
t_2 - t_1 = 2.726472 s more